精英家教网 > 初中数学 > 题目详情
12.如图,已知∠1+∠2﹦180°,∠3﹦∠B,则DE∥BC,下面是王华同学的推导过程﹐请你帮他在括号内填上推导依据或内容.
证明:
∵∠1+∠2﹦180(已知),
∠1﹦∠4  (对顶角相等),
∴∠2﹢∠4﹦180°.
∴EH∥AB (同旁内角互补,两直线平行).                    
∴∠B﹦∠EHC(两直线平行,同位角相等).
∵∠3﹦∠B(已知)
∴∠3﹦∠EHC(等量代换).
∴DE∥BC(内错角相等,两直线平行).

分析 先根据题意得出∠2﹢∠4﹦180°,故可得出EH∥AB,进而可得出∠B﹦∠EHC,再由∠3﹦∠B可得出∠3﹦∠EHC,据此可得出结论.

解答 证明:∵∠1+∠2﹦180°(已知),∠1﹦∠4  (对顶角相等),
∴∠2﹢∠4﹦180°.
∴EH∥AB ( 同旁内角互补,两直线平行).                    
∴∠B﹦∠EHC(两直线平行,同位角相等).
∵∠3﹦∠B(已知)
∴∠3﹦∠EHC( 等量代换).
∴DE∥BC(内错角相等,两直线平行).
故答案为:对顶角相等;∠4; 同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.

点评 本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.已知关于x,y的方程组$\left\{\begin{array}{l}{x-2y=k}\\{3x+4y=2k+2}\end{array}\right.$的解适合方程2x+6y=9,则k的值为7.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.在一个不透明的盒子中装有n个小球,他们只有颜色上的区别,其中有3个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是15.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知抛物线C1:y=x2+2x-3与x轴交于点A,B(点A在点B左侧),与y轴交于点C,抛物线C2:y=ax2+bx+c经过点B,与x轴的另一个交点为E(-4,0),与y轴交于点D(0,2).
(1)求抛物线C2的解析式;
(2)设点P为线段AB上一动点(点P不与点A,B重合),过点P作x轴的垂线交抛物线C1于点M,交抛物线C2于点N.
①当四边形AMBN的面积最大时,求点P的坐标;
②当CM=DN≠0时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知点P(x,y),且|x-2|+|y+4|=0,则点P在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折得△FMN,若MF∥AD,FN∥DC,则∠B为(  )
A.80°B.95°C.110°D.105°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=$\sqrt{2}$;正确的是(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列说法中错误的是(  )
A.原点的坐标是(0,0)B.x轴上的所有点的纵坐标都相等
C.y轴上的所有点的横坐标都相等D.点(0,-1)在第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在Rt△ABC中,∠ABC=90°,AC=10cm,BC=8cm,点D是线段AC的中点,动点P从点A出发,沿A-D-B-C向终点C运动,速度为5cm/s,当点P不与点A,B重合时,作PE⊥AB交线段AB于点E,设点P的运动时间为t(s),△APE的面积为S(cm2).
(1)求AB的长;
(2)当点P在线段BD上时,求PE的长(用含t的式子表示);
(3)当P沿A-D-B运动时,求S与t之间的函数关系式;
(4)点E关于直线AP的对称点为E′,当点E′落在△ABC的内部时,直接写出t的取值范围.

查看答案和解析>>

同步练习册答案