精英家教网 > 初中数学 > 题目详情
如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,△CEF的面积最大值是(  )
分析:先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.
解答:解:连接AC,如图所示,
∵四边形ABCD为菱形,∠BAD=120°,
∠1+∠EAC=60°,∠3+∠EAC=60°,
∴∠1=∠3,
∵∠BAD=120°,
∴∠ABC=60°,
∴△ABC和△ACD为等边三角形,
∴∠4=60°,AC=AB,
∴在△ABE和△ACF中,
 
∠1=∠3
AC=AC
∠ABC=∠4

∴△ABE≌△ACF(ASA).
则S△ABE=S△ACF
故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,
作AH⊥BC于H点,则BH=2,
S四边形AECF=S△ABC=
1
2
BC•AH=
1
2
BC•
AB2-BH2
=4
3

由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短.
故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,
又S△CEF=S四边形AECF-S△AEF,则此时△CEF的面积就会最大.
∴S△CEF=S四边形AECF-S△AEF=4
3
-
1
2
×2
3
×
(2
3
)2-(
3
)2
=
3

故选:A.
点评:本题考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,求证△ABE≌△ACF是解题的关键,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB中点,若OE=3,则菱形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在菱形ABCD中,AC,BD交于点O,AB=15,AO=12,P从A出发,Q从O出发,分别以2cm/s和1cm/s的速度各自向O,B点运动,当运动时间为多少秒时,四边形BQPA的面积是△POQ面积的8倍.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•保定二模)如图所示,在菱形ABCD中,点E,F分别为AB,AC的中点,菱形ABCD的周长为32,则EF的长等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在菱形ABCD中,AC、BD相交于O,且AC:BD=1:
3
,若AB=2.求菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在菱形ABCD中,AB=AC=3cm,求∠BCD的大小和菱形的周长.

查看答案和解析>>

同步练习册答案