精英家教网 > 初中数学 > 题目详情

【题目】如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于(  )

A. 50° B. 55° C. 65° D. 70°

【答案】B

【解析】

连接BD,根据直径所对的圆周角为直角可得∠ABD=90°,即可求得∠ADB=20°,再由圆内接四边形的对角互补可得∠C=110°,因,即可得BC=DC,根据等腰三角形的性质及三角形的内角和定理可得∠BDC=∠DBC=35°,由此即可得∠ADC=∠ADB+∠BDC=55°.

解:连接BD,

∵AD是半圆O的直径,

∴∠ABD=90°,

∵∠BAD=70°,

∴∠C=110°,∠ADB=20°,

∴BC=DC,

∴∠BDC=∠DBC=35°,

∴∠ADC=∠ADB+∠BDC=55°.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图某小船准备从处出发,沿北偏东的方向航行,在规定的时间将一批物资运往处的货船上,后考虑这条航线可能会因退潮而使小船搁浅,决定改变航线,从处出发沿正东方向航行海里到达处,再由处沿北偏东的方向航行到达处.

(1)小船由到达走了多少海里(结果精确到海里);

(2)为了按原定时间到达处的货船上,小船提速,每小时增加海里,求小船原定的速度(结果精确到海里/时).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示有下列4个结论:①abc>0;②b<a+c;③4a+2b+c>0;④a+b>m(am+b)(m≠1的实数),其中正确结论的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC中,ABAC4,∠BAC100°,点D是底边BC的动点(点D不与BC重合),连接AD,作∠ADE40°,DEAC交于点E

1)当DC等于多少时,△ABD与△DCE全等?请说明理由;

2)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求出∠BDA的度数;若不可以,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表是二次函数的部分的对应值:

x

-1

0

1

2

3

y

m

-1

-2

-1

2

(1)求函数解析式;

(2)时,y的取值范围是___________;

(3)当抛物线的顶点在直线的下方时,n的取值范围是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA、PB、DE切分别切⊙O于点A、B、C,若∠P=50°,则∠DOE=_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABD△ACE中,有下列四个等式:①AB=AC②AD=AE③∠1=∠2④BD=CE.以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.

已知:

求证:

证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,等边△ABC的边长为8DAC上的一个动点,延长AB到点E,使BE=CD,连接DEBC于点P

1)求证:DP=EP

2)若DAC的中点,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】类比转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.

(1)尝试探究

如图(1),在正方形ABCD中,对角线ACBD相交于点O,点EBC边上一点,AEBD交于点G,过点EEFAEAC于点F,若=2,则的值是

(2)拓展迁移

如图(2),在矩形ABCD中,过点BBHAC于点O,交AD相于点H,点EBC边上一点,AEBH相交于点G,过点EEFAEAC于点F.

①若∠BAE=ACB,sinEAF=,求tanACB

②若=ba>0,b>0),求的值(用含ab的代数式表示).

图(1) 图(2)

查看答案和解析>>

同步练习册答案