精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,已知A(0,3),B(4,0),设P、Q分别是线段AB、OB上的动点,它们同时出发,点P以每秒3个单位的速度从点A向点B运动,点Q以每秒1个单位的速度从点B向点O运动.设运动时间为t(秒).
(1)用含t的代数式表示点P的坐标;
(2)当t为何值时,△OPQ为直角三角形?
(3)在什么条件下,以Rt△OPQ的三个顶点能确定一条对称轴平行于y轴的抛物线?选择一种情况,求出所确定的抛物线的解析式.

【答案】分析:(1)作PM⊥y轴,PN⊥x轴,那么PM就是P点的横坐标,PN就是P点的纵坐标.然后可通过相似三角形AMP和AOB求出MP的长,同理可通过相似三角形BPN和BAP求出PN的长,即可得出P点的坐标.
(2)本题要分情况进行讨论:
①当∠POQ=90°时,P,A重合此时t=0;
当∠OPQ=90°时,可根据射影定理得出PN2=ON•NQ,由此可求出t的值.
当∠OPQ=90°时,Q,N重合,可用BQ的长表示出P点的横坐标,以此可求出t的值.
(3)很显然当∠OPQ=90°时,可确定一条符合条件的抛物线,可根据(2)中得出的∠OPQ=90°时t的取值,确定出P,Q的坐标,然后用待定系数法即可求出这条抛物线的解析式.
解答:解:(1)作PM⊥y轴,PN⊥x轴.
∵OA=3,OB=4,
∴AB=5.
∵PM∥x轴,


∴PM=t.
∵PN∥y轴,


∴PN=3-t,
∴点P的坐标为(t,3-t).

(2)①当∠POQ=90°时,t=0,△OPQ就是△OAB,为直角三角形.
②当∠OPQ=90°时,△OPN∽△PQN,
∴PN2=ON•NQ.
(3-t)2=t(4-t-t).
化简,得19t2-34t+15=0,
解得t=1或t=
③当∠OQP=90°时,N、Q重合.
∴4-t=t,
∴t=
综上所述,当t=0,t=1,t=,t=时,△OPQ为直角三角形.

(3)当t=1或t=时,即∠OPQ=90°时,
以Rt△OPQ的三个顶点可以确定一条对称轴平行于y轴的抛物线.
当t=1时,点P、Q、O三点的坐标分别为P(),Q(3,0),O(0,0).
设抛物线的解析式为y=a(x-3)(x-0),
即y=a(x2-3x).
将P()代入上式,
得a=-
∴y=-(x2-3x).
即y=-x2+x.
说明:若选择t=时,点P、Q、O三点的坐标分别是P(),Q(,0),O(0,0).
求得抛物线的解析式为y=-x2+x.
点评:本题着重考查了待定系数法求二次函数解析式、三角形相似、直角三角形的判定等知识点,考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案