精英家教网 > 初中数学 > 题目详情
3.阅读下列材料,然后解答问题:在化简二次根式时,有时会碰到形如$\frac{3}{\sqrt{5}}$、$\frac{2}{\sqrt{3}+1}$这一类式子,通常可以这样进行化简
方法一:
$\frac{3}{\sqrt{5}}$=$\frac{3×\sqrt{5}}{\sqrt{5}×\sqrt{5}}$=$\frac{3\sqrt{5}}{5}$
$\frac{2}{\sqrt{3}+1}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3})^{2}-{1}^{2}}$=$\sqrt{3}$-1.这种化简步骤叫分母有理化.
方法二:
$\frac{2}{\sqrt{3}+1}$还可以用下面方法化简
$\frac{2}{\sqrt{3}+1}$=$\frac{3-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3})^{2}-{1}^{2}}{\sqrt{3}+1}$=$\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{\sqrt{3}+1}$=$\sqrt{3}$-1.
请用上面的两种方法化简$\frac{2}{\sqrt{5}+\sqrt{3}}$.

分析 根据题意即可求出答案.

解答 解:方法一:原式=$\frac{2(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}$=$\frac{2(\sqrt{5}-\sqrt{3})}{5-3}$=$\sqrt{5}-\sqrt{3}$
方法二:原式=$\frac{5-3}{\sqrt{5}+\sqrt{3}}$=$\frac{(\sqrt{5})^{2}-(\sqrt{3})^{2}}{\sqrt{5}+\sqrt{3}}$=$\frac{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}{\sqrt{5}+\sqrt{3}}$=$\sqrt{5}-\sqrt{3}$

点评 本题考查分母有理化,解题的关键是熟练运用平方差公式,本题属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.请你举出一个函数实例(指出自变量的取值范围)y=$\frac{1}{x}$ (x≠0).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知菱形ABCD的周长为16,∠B=120°,求这个菱形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.AF初中为了提高学生综合素质,决定开设以下校本课程:A软笔书法;B经典诵读;C钢笔画;D花样跳绳;为了了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行了调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

(1)这次被调查的学生共有多少人?
(2)请将条形统计图(2)补充完整;
(3)在平时的花样跳绳的课堂学习中,甲、乙、丙三人表现优秀,现决定从这三名同学中任选两名参加全区综合素质展示,求恰好同时选中甲、乙两位同学的概率(用树状图法或表格法解答)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图所示二次函数y1=x2+2x+2与y2=x2-2x+2是“关于y轴对称二次函数”.
(1)直接写出两条图中“关于y轴对称二次函数”图象所具有的共同特点.
(2)二次函数y=2(x+2)2+1的“关于y轴对称二次函数”解析式为y=2(x-2)2+1;二次函数y=a(x-h)2+k的“关于y轴对称二次函数”解析式为y=a(x+h)2+k;
(3)平面直角坐标系中,记“关于y轴对称二次函数”的图象与y轴的交点为A,它们的两个顶点分别为B,C,且BC=6,顺次连接点A,B,O,C得到一个面积为24的菱形,求“关于y轴对称二次函数”的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列等式一定成立的是(  )
A.$\sqrt{9}$-$\sqrt{4}$=$\sqrt{5}$B.|1-$\sqrt{3}$|=$\sqrt{3}$-1C.$\sqrt{9}$=±3D.-$\sqrt{(-9)^{2}}$=9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.我县某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价贵12元,用12000元购进的科普书本数是用9000元购进的文学书本数的$\frac{4}{5}$.那么文学书和科普书的单价各是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是(  )
A.4B.2$\sqrt{3}$C.4$\sqrt{3}$D.2$\sqrt{7}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.阅读下列信息:①它的图象是不经过第二象限的一条直线且与y轴的交点P到原点O的距离为3,②当x的值为2时,函数y的值为0,则y随x的增大而增大,此直线与坐标轴所围成的三角形面积为$\frac{9}{4}$.

查看答案和解析>>

同步练习册答案