精英家教网 > 初中数学 > 题目详情

【题目】如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.

证明:∵   

∴∠CDA=90°,∠DAB=90° (   ).

∴∠1+∠3=90°,∠2+∠4=90°.

又∵∠1=∠2,

      ),

∴DF∥AE (   ).

【答案】CDDA,DAAB,垂直定义,∠3=4,等角的余角相等,内错角相等,两直线平行.

【解析】

先根据垂直的定义,得到,再根据等角的余角相等,得出,最后根据内错角相等,两直线平行进行判定即可.

证明:∵CDDA,DAAB,

∴∠CDA=90°,DAB=90°,(垂直定义)

∴∠1+∠3=90°,2+∠4=90°.

又∵∠1=2,

∴∠3=4,(等角的余角相等)

DFAE.(内错角相等,两直线平行)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.
(1)根据图象,阶梯电价方案分为三个档次,填写下表:

档次

第一档

第二档

第三档

每月用电量x(度)

0<x≤140


(2)小明家某月用电120度,需交电费元;
(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;
(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别延长□ABCD的边CD,ABE,F,使DE=BF,连接EF,分别交AD,BCG,H,连结CG,AH.

求证:CG∥AH.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,…….照此规律,点P第100次跳动至点P100的坐标是( )

A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,对角线AC、BD交于点O,给出下列四组条件:①ABCD,ADBC;ABCD,A=C;AO=CO,BO=DO;ABCD,AD=BC.

一定能判定四边形ABCD是平行四边形的条件有----------------------------( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自学:如图1,△ABC中,D是BC边上一点,则△ABD与△ADC有一个相同的高,它们的面积之比等于相应的底之比,记为 =
(△ABD,△ADC的面积分别用记号SABD , SADC表示)

(1)心得:如图1,若BD= DC,则SABD:SADC=
(2)成长:如图2,△ABC中,M,N分别是AB,AC边上一点,且有AM:MB=2:1,AN:NC=1:1,则△AMN与△ABC的面积比为
(3)巅峰:如图3,△ABC中,P,Q,R分别是BC,CA,AB边上的点,且AP,BQ,CR相交于点O,现已知△BPO,△PCO,△COQ,△AOR的面积依次为40,30,35,84,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AOB是一条直线,OC是∠AOD的平分线,OE 是∠BOD的平分线.

1)若∠AOE=140°,求∠AOC的度数;

2)若∠EOD :∠COD=2 : 3,求∠COD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为6,B是数轴上一点,且

.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t)秒.

(1)请写出数轴上点B表示的数    ,点P表示的数    (用含t 的整式表示);

(2)若MAP的中点,NPB的中点.P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD内有一折线段,其中AE丄EF,EF丄FC,并且AE=3,EF=4,FC=5,则正方形ABCD的外接圆的半径是

查看答案和解析>>

同步练习册答案