精英家教网 > 初中数学 > 题目详情
如图,已知在平面直角坐标系xOy中,抛物线y=
1
4
x2+bx+c与x轴交于点A、B(点A在点B右侧),与y轴交于点C(0,-3),且OA=2OC.
(1)求这条抛物线的表达式及顶点M的坐标;
(2)求tan∠MAC的值;
(3)如果点D在这条抛物线的对称轴上,且∠CAD=45°,求点D的坐标.
考点:二次函数综合题
专题:
分析:(1)根据与y轴的交点C的坐标(0,-3)就可以求出OC的值及c的值,进而求出OA的值及A的坐标,由待定系数法就可以求出b的值而求出解析式及定点坐标;
(2)如图1,过点M作MH⊥x轴,垂足为点H,交AC于点N,过点N作NE⊥AM于点E,垂足为点E.在Rt△AHM中,HM=AH=4,就可以求出AM的值,再由待定系数法求出直线AC的解析式,就可以求出点N的坐标,进而求出MN的值,由勾股定理就可以求出ME及NE的值,从而求出AE的值就可以得出结论;
(3)如图2,分类讨论,当D点在AC上方时,根据角之间的关系就可以求出∠D1AH=∠CAM,当D点在AC下方时,∠MAC=∠AD2M就可以求出点D的坐标.
解答:解:(1)∵C(0,-3),
∴OC=3.y=
1
4
x2+bx-3.
∵OA=2OC,
∴OA=6.
∵a=
1
4
>0,点A在点B右侧,抛物线与y轴交点C(0,-3).
∴A(6,0).
∴0=
1
4
×
36+6b-3,
∴b=-1.
∴y=
1
4
x2-x-3,
∴y=
1
4
(x-2)2-4,
∴M(2,-4).
答:抛物线的解析式为y=
1
4
x2-x-3,M的坐标为(2,-4);
(2)如图1,过点M作MH⊥x轴,垂足为点H,交AC于点N,过点N作NE⊥AM于点E,垂足为点E.
∴∠AHM=∠NEM=90°.
在Rt△AHM中,HM=AH=4,由勾股定理,得
AM=4
2

∴∠AMH=∠HAM=45°.
设直线AC的解析式为y=kx+b,由题意,得
0=6k+b
-3=b

解得:
k=
1
2
b=-3

∴直线AC的表达式为y=
1
2
x-3.
当x=2时,y=-2,
∴N(2,-2).
∴MN=2.
∵∠NEM=90°,∠NME=45°,
∴∠MNE=∠NME=45°,
∴NE=ME.
在Rt△MNE中,
∴NE2+ME2=NM2
∴ME=NE=
2

∴AE=AM-ME=3
2

在Rt△AEN中,tan∠MAC=
NE
AE
=
2
3
2
=
1
3

答:tan∠MAC=
1
3

(3)如图2,①当D点在AC上方时,
∵∠CAD1=∠D1AH+∠HAC=45°,且∠HAM=∠HAC+∠CAM=45°,
∴∠D1AH=∠CAM,
∴tan∠D1AH=tan∠MAC=
1
3

∵点D1在抛物线的对称轴直线x=2上,
∴D1H⊥AH,
∴AH=4.
在Rt△AHD1中,
D1H=AH•tan∠D1AH=4×
1
3
=
4
3

∴D1(2,
4
3
);
②当D点在AC下方时,
∵∠D2AC=∠D2AM+∠MAC=45°,且∠AMH=∠D2AM+∠AD2M=45°,
∴∠MAC=∠AD2M.
∴tan∠AD2H=tan∠MAC=
1
3

在Rt△D2AH中,D2H=
AH
tan∠AD2H
=4÷
1
3
=12

∴D2(2,-12).
综上所述:D1(2,
4
3
);D2(2,-12).
点评:本题考查了待定系数法求二次函数的解析式的运用,一次函数的解析式的运用,二次函数的顶点式的运用,等腰直角三角形的性质的运用,三角函数值的运用,解答时求出函数的解析式是关键,灵活运用等腰直角三角形的性质求解是难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

圆锥底面圆的半径为2,母线长为8,则圆锥侧面展开图的圆心角是(  )
A、30°B、40°
C、60°D、90°

查看答案和解析>>

科目:初中数学 来源: 题型:

某市出租车按里程计费标准为:不超过3公里部分,计费11元,超过3公里部分,按每公里2.4元计费.现在在此基础上,如果车速不超过12公里/小时,那么再加收0.48元/分钟,这项费用叫做“双计费”.图中三段折线表示某时间段内,一辆出租车的计费总额y(元)与行驶时间x(分钟)的函数关系(出租车在每段上均匀速行驶).
(1)写出AB段表示的实际意义;
(2)求出线段BC所表示的y与x的函数关系式;
(3)是否可以确定在CD段该辆出租车的计费过程中产生了“双计费”的费用?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线l是第二、四象限的角平分线.
(1)由图观察易知A(2,0)关于直线l的对称点A′的坐标为(0,-2),请在图中分别标明B(5,3)、C(2,5),关于直线l的对称点B′、C′的位置,并写出它们的坐标;B′
 
、C′
 

(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第二、四象限的角平分线l的对称点P′的坐标为
 
(不必证明);
(3)已知两点D(-1,-3)、E(1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,点E是BC的中点、F是CD上的点,联结AE、EF、AC.
(1)求证:AO•OF=OC•OE;
(2)若点F是DC的中点,联结BD交AE于点G,求证:四边形EFDG是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.
(1)若⊙O的半径为8,求CD的长;
(2)求证:PE=PF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a,b是常数)的图象与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q.
(1)求a和b的值;
(2)求t的取值范围;
(3)若t=-2,求△PCQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知函数y=
k
x
与y=-x+8有两个不同的交点,则k的取值范围为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

用适当的方法解下列方程:
(1)(2x-1)2-16=0;
(2)x2+4x+1=0;
(3)6x2-5x-1=0;
(4)x(2x-1)=3(1-2x)

查看答案和解析>>

同步练习册答案