精英家教网 > 初中数学 > 题目详情
(2005•日照)如图,⊙O1和⊙O2内切于点P,且⊙O1过点O2,PB是⊙O2的直径,A为⊙O2上的点,连接AB,过O1作O1C⊥BA于C,连接CO2.已知PA=,PB=4.
(1)求证:BA是⊙O1的切线;
(2)求∠BCO2的正切值.

【答案】分析:(1)由题意得O1C⊥BA,证得O1C为半径即可;
(2)应把∠BCO2进行转移,转移到已求得的线段的比值.
解答:(1)证明:∵PB是⊙O2的直径,A为⊙O2上的点,
∴∠PAB=90°.
又∵O1C⊥BA,
∴△PAB∽△O1CB.
∵PA=,PB=4,
∴01C=1.
∴O1C是⊙O1的半径,
∵O1C⊥BA于C,
∴BA是⊙O1的切线.

(2)解:BC==
连接PC;
∵∠B=∠B,∠BCO2=∠BPC,
∴△BPC∽△BCO2
∴O2C:CP=BO2:BC=2:=tanBPC=tanBCO2
(在Rt△PCO2中,tanBPC=O2C:CP)
∴tanBCO2=
点评:证得直线为切线的条件:到圆心的距离等于半径,与半径垂直;要求的三角函数值需转移到已知的线段的比.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2005•日照)如图,△OAB是边长为4+2的等边三角形,其中O是坐标原点,顶点B在y轴的正半轴上.将△OAB折叠,使点A与OB边上的点P重合,折痕与OA、AB的交点分别是E、F.如果PE∥x轴,
(1)求点P、E的坐标;
(2)如果抛物线y=-x2+bx+c经过点P、E,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2005年山东省日照市中考数学试卷(解析版) 题型:解答题

(2005•日照)如图,△OAB是边长为4+2的等边三角形,其中O是坐标原点,顶点B在y轴的正半轴上.将△OAB折叠,使点A与OB边上的点P重合,折痕与OA、AB的交点分别是E、F.如果PE∥x轴,
(1)求点P、E的坐标;
(2)如果抛物线y=-x2+bx+c经过点P、E,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《圆》(16)(解析版) 题型:解答题

(2005•日照)如图,直角梯形ABCD中,AD∥BC,∠A=90°,∠C=60°,AD=3cm,BC=9cm.⊙O1的圆心O1从点A开始沿折线A-D-C以1cm/s的速度向点C运动,⊙O2的圆心O2从点B开始沿BA边以cm/s的速度向点A运动,⊙O1半径为2cm,⊙O2的半径为4cm,若O1、O2分别从点A、点B同时出发,运动的时间为t.
(1)请求出⊙O2与腰CD相切时t的值;
(2)在0s<t≤3s范围内,当t为何值时,⊙O1与⊙O2外切?

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《四边形》(10)(解析版) 题型:解答题

(2005•日照)如图,直角梯形ABCD中,AD∥BC,∠A=90°,∠C=60°,AD=3cm,BC=9cm.⊙O1的圆心O1从点A开始沿折线A-D-C以1cm/s的速度向点C运动,⊙O2的圆心O2从点B开始沿BA边以cm/s的速度向点A运动,⊙O1半径为2cm,⊙O2的半径为4cm,若O1、O2分别从点A、点B同时出发,运动的时间为t.
(1)请求出⊙O2与腰CD相切时t的值;
(2)在0s<t≤3s范围内,当t为何值时,⊙O1与⊙O2外切?

查看答案和解析>>

同步练习册答案