精英家教网 > 初中数学 > 题目详情
11.解方程3x2+5x+1=0.

分析 直接利用求根公式求解一元二次方程的解即可.

解答 解:3x2+5x+1=0,
这里a=3,b=5,c=1,
b2-4ac=52-4×3×1=13,
x=$\frac{-5±\sqrt{13}}{6}$,
x1=$\frac{-5+\sqrt{13}}{6}$,x2=$\frac{-5-\sqrt{13}}{6}$.

点评 本题考查了解一元二次方程的应用,能正确运用公式法解一元二次方程是解此题的关键,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.计算($\sqrt{3}$+1)($\sqrt{3}$-1)的结果等于2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.若点A(-4,3)、B(m,2)在同一个反比例函数的图象上,则m的值为(  )
A.6B.-6C.12D.-12

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知:四边形ABCD中,E为AB的中点,连接CE,DE,CD=CE=BE,DE∥BC.
(1)求证:四边形ADCE是菱形;
(2)若BC=6,CE=5,求四边形ADCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知女排赛场标准球网的高度是2.24米,在2016年奥运会女排比赛中,某队球员在一次扣球时,球恰好擦网而过(击球擦网落地过程为直线),落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,则该运动员击球的高度是3.08米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.分解因式x2-4y2-2x+4y,细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了,过程为:
x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2)这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:
(1)分解因式:a2-4a-b2+4;
(2)△ABC三边a,b,c满足a2-ab-ac+bc=0,判断△ABC的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交直线BC于M.
(1)如图1,当∠A=40°时,∠NMB=20度.
(2)如图2,当∠A=70°时,∠NMB=35度.
(3)如图3,你发现了∠A与∠NMB有何关系?写出结论,不用证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.探究题:
(1)小明和小亮在计算这样一道求值题:“当a=-3时,求整式7a2-[5a-(4a-1)+4a2]-(2a2-a+1)的值.”小亮正确求得结果为7,而小明在计算时,错把a=-3看成a=3,但计算结果也是正确的.你能说明为什么吗?
(2)小张买了张50元的乘车IC卡,如果他乘车的次数用m表示,则记录他每次乘车后的余额n(元)如下表:
次数m余额n(元)
150-0.8
250-1.6
350-2.4
450-3.2
①写出乘车的次数m表示余额n(元)的关系式;
②利用上述关系式计算小张乘了13次车后还剩下多少元?小张最多能乘多少次车?
(3)观察如下计算:
$\sqrt{4}$×$\sqrt{9}$=6,$\sqrt{4×9}$=6 
 $\sqrt{16}$×$\sqrt{25}$=20,$\sqrt{16×25}$=20;
$\sqrt{\frac{1}{121}}$×$\sqrt{36}$=$\frac{6}{11}$,$\sqrt{\frac{1}{121}×36}$=$\frac{6}{11}$
你能找出规律吗?请按找到的规律计算:
①$\sqrt{5}$×$\sqrt{20}$
②$\sqrt{1\frac{2}{3}}$×$\sqrt{9\frac{3}{5}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:(-3)2÷2$\frac{1}{4}$-(-$\frac{4}{3}$)×(-$\frac{3}{8}$).

查看答案和解析>>

同步练习册答案