精英家教网 > 初中数学 > 题目详情
16.如图,在△ABC中,AD⊥BC,BD=CD,点C在线段AE的垂直平分线上,若AB=8,BC=6,则根据现有条件,能否求出DE的值?若能,请把DE的值求出来;若不能,请说明理由.

分析 因为AD⊥BC,BD=DC,点C在AE的垂直平分线上,由垂直平分线的性质得AB=AC=CE,由(1)的结论得AB=AC=CE,因为AC+CD=AB+BD,所以DE=EC+CD=AB+BD,即AB+BD=DE.

解答 解:∵AD⊥BC,BD=DC=$\frac{1}{2}$BC=3,
∴AB=AC;
又∵点C在AE的垂直平分线上,
∴AC=EC,
∴AB=AC=CE
∵AB=AC=CE,
∵AC+CD=AB+BD,
∴DE=EC+CD=AB+BD=8+3=11.

点评 本题主要考查线段的垂直平分线的性质等几何知识,利用线段的垂直平分线上的点到线段的两个端点的距离相等是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,点A,B,C,D在一条直线上,填写下列空格:
∵CE∥DF(已知)
∴∠F=∠1(两直线平行,内错角相等)
∵∠E=∠F(已知)∴∠1=∠E(等量代换)
∴AE∥BF(内错角相等,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.我们都知道$\sqrt{2}$的整数部分是1,那么它的小数部分就是它与1的差,那么,已知4+$\sqrt{3}$的小数部分是a,4-$\sqrt{3}$的小数部分是b,求(a+b)2011的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,矩形的面积为10,如果矩形的长为x,宽为y,对角线为d,周长为l,那么你能获得关于这些量的哪些函数?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,那么当y<0时,自变量x的取值范围是x<2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.通过估算,比较下面各组数的大小:
(1)$\frac{\sqrt{3}-1}{2}$,$\frac{1}{2}$;
(2)$\sqrt{15}$,3.85.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知一次函数y=kx+1经过A(1,2),O为坐标轴原点.
(1)求k的值.
(2)点P是x轴上一点,且满足∠APO=45°,直接写出P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,DE∥AB,△ADE∽△ABC,且相似比为$\frac{1}{3}$,若AD=3cm,AE=2cm,DE=4cm,求△ABC三边之和.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并证明你的结论.
解:∠C与∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义)
∴∠2=∠DFE(同角的补角相等),
∴AB∥EF(内错角相等,两直线平行)
∴∠3=∠ADE(两直线平行,内错角相等)
又∠B=∠3(已知)
∴∠B=∠ADE(等量代换)
∴DE∥BC(同位角相等,两直线平行)
∴∠C=∠AED(两直线平行,同位角相等).

查看答案和解析>>

同步练习册答案