精英家教网 > 初中数学 > 题目详情
如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠CDE的度数是(  )
分析:由BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,根据角平分线的定义,可求得∠EBC与∠FCB的度数,然后又三角形外角的性质,求得∠CDE的度数.
解答:解:∵BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,
∴∠CBE=
1
2
∠ABC=40°,∠FCB=
1
2
∠ACB=30°,
∴∠CDE=∠CBE+∠FCB=70°.
故选B.
点评:此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,BE、CF是△ABC的角平分线,∠A=50°,则∠BOC的度数是(  )精英家教网
A、50°B、65°C、115°D、110°

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,BE,CF是△ABC的角平分线,∠A=65°,那么BDC等于(  )
A、122.5°B、187.5°C、178.5°D、115°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BE、CF是△ABC的高,且BP=AC,CQ=AB.求证:AP⊥AQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BE、CF是△ABC的高,它们相交于点O,点P在BE上,Q在CF的延长线上且BP=AC,CQ=AB,
(1)求证:△ABP≌△QCA.
(2)AP和AQ的位置关系如何,请给予证明.

查看答案和解析>>

同步练习册答案