精英家教网 > 初中数学 > 题目详情
(2012•虹口区一模)点A(-1,y1)、B(2,y2)、C(4,y3)是抛物线y=-x2+2x+3上的三点,则y1、y2、y3的大小是
y3<y1<y2
y3<y1<y2

(用“<”连接).
分析:将点A(-1,y1)、B(2,y2)、C(4,y3)代入抛物线y=-x2+2x+3,即可求出y1、y2、y3的值,进而比较其大小.
解答:解:将点A(-1,y1)、B(2,y2)、C(4,y3)分别代入抛物线y=-x2+2x+3得,
y1=-(-1)2+2×(-1)+3=-1-2+3=0,
y2=-22+2×2+3=-4+4+3=3,
y3=-42+2×4+3=-16+8+3=-5,
∴y3<y1<y2
故答案为y3<y1<y2
点评:本题考查了二次函数图象上点的坐标特征,要明确,二次函数图象上的点符合函数解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,分别以下列选项作为一个已知条件,其中不一定能得到△AOB∽△COD的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,已知EF∥CD,DE∥BC,下列结论中不一定正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)实数2与0.5的比例中项是
±1
±1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)已知向量
a
b
x
满足关系式3(
a
-
x
)-2
b
=
0
,那么用向量
a
b
表示向量
x
=
a
-
2
3
b
a
-
2
3
b

查看答案和解析>>

同步练习册答案