分析 先根据垂直的定义得到∠AEC=∠BDA=90°,再根据等角的余角相等得到∠ABD=∠CAE,则可利用“AAS”判断△ABD≌△CAE,所以AD=CE,BD=AE,于是有BD-CE=AE-AD=DE.
解答 证明:∵CE⊥AM,BD⊥AM,
∴∠AEC=∠BDA=90°,
∴∠BAD+∠ABD=90°,
∵∠BAC=90°,即∠BAD+∠CAE=90°,
∴∠ABD=∠CAE,
在△ABD和△CAE中,$\left\{\begin{array}{l}{∠ABD=∠CAE}&{\;}\\{∠ADB=∠CEA}&{\;}\\{AB=CA}&{\;}\end{array}\right.$,
∴△ABD≌△CAE(AAS),
∴AD=CE,BD=AE,
∴BD-CE=AE-AD=DE,
即DE=BD-CE.
点评 本题考查了全等三角形的判定与性质、直角三角形的性质;证明三角形全等得出对应边相等是解决问题的关键,注意数形结合思想的运用.
科目:初中数学 来源: 题型:选择题
A. | (2,5) | B. | (5,2) | C. | (4,$\frac{5}{2}$) | D. | ($\frac{5}{2}$,4) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 45° | B. | 55° | C. | 65° | D. | 75° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 50° | B. | 60° | C. | 70° | D. | 80° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
第一套 | 第二套 | |
椅子高度xcm | 40.0 | 38.0 |
课桌高度ycm | 75.0 | 71.8 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (-4,0) | B. | (-2,0) | C. | (-4,0)或(-2,0) | D. | (-3,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com