精英家教网 > 初中数学 > 题目详情
4.已知a2+a+1=0,求a4+2a3-a2-2a+2014的值.

分析 由已知条件得到a2+a=1,再利用因式分解得到(-1-a)2+2a-(-1-a)+2014,利用整体代入的方法计算得到-(a2+a)+2016,然后再利用整体代入的方法计算即可.

解答 解:因为:a2+a+1=0,
所以:a2+a=-1,
所以:a4+2a3-a2-2a+2014
=(-1-a)2+2a-(-1-a)+2014,
=-a2-a+2016
=-(a2+a)+2016
=2017.
答:a3+2a2+2014的值是2017.

点评 本题考查了因式分解的应用:利用因式分解解决求值问题,利用因式分解解决证明问题,利用因式分解简化计算问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.因式分解:
(1)a2b2-a2-2ab-b2
(2)x3-x2y+xy2-y3
(3)(ax-by)2+(bx+ay)2
(4)(x2-4y2)+(4y-1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某餐厅中,一张桌子可以坐6人,如果把多张桌子摆在一起,可以有以下两种摆放方式.

(1)当有5张桌子时,第一种摆放方式能坐22人,第二种摆放方式能坐14人,
(2)当有n张桌子时,第一种摆放方式能坐4n+2人,第二种摆放方式能坐2n+4人,
(3)一天中午餐厅要接待98位顾客共同就餐(即桌子要摆在一起),但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在三角形ABC中,∠C=90度,AD是角平分线,CD=1.5,BD=2.5,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.△ABC内分别有1个点,2个点,3个点,…,连同三角形的三个顶点,没有三点在同一直线上,试通过画图探究这些点可以把三角形分割成几个互不重叠的小三角形:

(1)图①中,当△ABC内只有1个点时,可分割成3个互不重叠的小三角形.
(2)图②中,当△ABC内只有2个点时,可分割成5个互不重叠的小三角形.
(3)图③中,当△ABC内只有3个点时,可分割成7个互不重叠的小三角形.
(4)根据以上规律,请猜测当△ABC内有n(n为正整数)个点时,可以把△ABC分割成2n+1个互不重叠的三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.若y=$\sqrt{3x-2}$+$\sqrt{2-3x}$+1,求3x+y的值是3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.问题情境:
如图1,P是⊙O外的一点,直线PO分别交⊙O于点A、B,则PA是点P到⊙O上的点的最短距离.
探究:
请您结合图2给予证明,
归纳:
圆外一点到圆上各点的最短距离是:这点到连接这点与圆心连线与圆交点之间的距离.
图中有圆,直接运用:
如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是$\widehat{CD}$上的一个动点,连接AP,则AP的最小值是$\sqrt{7}$-1.
图中无圆,构造运用:
如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C长度的最小值.
解:由折叠知A′M=AM,又M是AD的中点,可得MA=MA'=MD,故点A'在以AD为直径的圆上.如图8,以点M为圆心,MA为半径画⊙M,过M作MH⊥CD,垂足为H,(请继续完成下列解题过程)
迁移拓展,深化运用:
如图6,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是$\sqrt{5}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.图1为一张三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为(  )
A.3:2B.5:3C.8:5D.13:8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.画出函数y1=-2x-3和函数y2=3x+2的图象,根据图象指出x取什么值时,y1<y2

查看答案和解析>>

同步练习册答案