精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为

A. B. C. D.

【答案】A

【解析】分析: 连接BEBD如图,利用菱形的性质得BDC为等边三角形,Rt△BCE中计算出BE=,接着证明BEAB, 利用折叠的性质得到EF=AF.,EF=AF=x, FG垂直平分AE,所以在Rt△BEF中利用勾股定理列方程求解即可.

详解: 连接BEBD如图,

四边形ABCD为菱形,∠A=60°,

∴△BDC为等边三角形, ∠C=∠A=60°,

∴∠CBE=90°-60°=30°.

E点为CD的中点

CE=DE=1,BECD.

Rt△BCE

BC=2CE=2,

BE= .

ABCD,

BEAB.

菱形纸片翻折,使点A落在CD的中点E,

EF=AF.

EF=AF=x,BF=2-x,

Rt△BEF,

,

解得 .

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,,垂足为G,若,则AE的边长为  

A. B. C. 4 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角板中的两块直角三角尺的直角顶点 O 按如图方式叠放在一起.

( 1 ) 如图 1 , ∠ BOD=35° , ∠ AOC= ∠AOC=135°, ∠BOD=

(2)如图2,∠AOC=140°,则∠BOD=

(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由.

(4)三角尺 AOB 不动,将三角尺 COD OD 边与 OA 边重合,然后绕点 O 按顺时针或逆时针方向任意转动一个角度,当∠A OD(0°<AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】题目:在同一平面上,若∠AOB=75°,BOC=15°,求∠AOC的度数.

下面是七(2)班马小虎同学的解题过程:

解:根据题意画出图形,如图所示,

∵∠AOC=AOB-BOC=75°-75°=60°

∴∠AOC=60°

若你是老师,会判马小虎满分吗?若会,说明理由;若不会,请指出错误之处,并给出你认为正确的解法.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线的解析表达式为:y=-3x+3,且与x轴交于点D,直线经过点A,B,直线交于点C.

(1)求点D的坐标;

(2)求直线的解析表达式;

(3)求ADC的面积;

(4)在直线上存在异于点C的另一点P,使得ADP的面积是ADC面积的2倍,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,过点D作DE⊥AD交AB于点E,以AE为直径作⊙O.
(1)求证:BC是⊙O的切线;
(2)若AC=3,BC=4,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程mx2+(3﹣m)x﹣3=0(m为实数,m≠0).

(1) 试说明:此方程总有两个实数根.

(2) 如果此方程的两个实数根都为正整数,求整数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.
(1)求证:DB=DE;
(2)求证:直线CF为⊙O的切线

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B.则线段BC=

查看答案和解析>>

同步练习册答案