【题目】某学校有1500名学生参加首届“我爱我们的课堂”为主题的图片制作比赛,赛后随机抽取部分参赛学生的成绩进行整理并制作成图表如下:
频率分布统计表 | 频率分布直方图 | ||
分数段 | 频数 | 频率 | |
60≤x<70 | 40 | 0.40 | |
70≤x<80 | 35 | b | |
80≤x<90 | a | 0.15 | |
90≤x<100 | 10 | 0.10 | |
请根据上述信息,解答下列问题:
(1)表中:a= ,b= ;
(2)请补全频数分布直方图;
(3)如果将比赛成绩80分以上(含80分)定为优秀,那么优秀率是多少?并且估算该校参赛学生获得优秀的人数。
【答案】(1)a=15,b=0.35;(2)如下图;(3)25℅,375
【解析】
试题分析:(1)根据第一组的频数与频率可求出总的调查人数,然后根据第二组的频数和第三组的频率即可求出a和b的值;
(2)根据(1)中求出的a值,可补全频数分布直方图;
(3)优秀率=第三组和第四组的频率之和×100%;用总人数乘以优秀率,计算即可得解.
(1)总的调查人数=40÷0.40=100人,
∵第二组的频数为35,
∴b=35÷100=0.35;
∵第三组的频率为0.15,
∴a=100×0.15=15;
(2)补全频数分布直方图如下所示:
(3)优秀率=(0.15+0.10)×100%=25%,
1500×25%=375(人).
科目:初中数学 来源: 题型:
【题目】如图1,二次函数y1=(x﹣2)(x﹣4)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴l与x轴交于点C,它的顶点为点D.
(1)写出点D的坐标 .
(2)点P在对称轴l上,位于点C上方,且CP=2CD,以P为顶点的二次函数y2=ax2+bx+c(a≠0)的图象过点A.
①试说明二次函数y2=ax2+bx+c(a≠0)的图象过点B;
②点R在二次函数y1=(x﹣2)(x﹣4)的图象上,到x轴的距离为d,当点R的坐标为 时,二次函数y2=ax2+bx+c(a≠0)的图象上有且只有三个点到x轴的距离等于2d;
③如图2,已知0<m<2,过点M(0,m)作x轴的平行线,分别交二次函数y1=(x﹣2)(x﹣4)y2=ax2+bx+c(a≠0)的图象于点E、F、G、H(点E、G在对称轴l左侧),过点H作x轴的垂线,垂足为点N,交二次函数y1=(x﹣2)(x﹣4)的图象于点Q,若△GHN∽△EHQ,求实数m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中有三点A(﹣2,1),B(3,1),C(2,3),请解答下列问题:
(1)在坐标系内描出A,B,C的位置;
(2)画出△ABC关于x轴对称的图形△A1B1C1,并写出顶点A1,B1,C1的坐标;
(3)写出∠C的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;
(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.
(1)求袋中黄球的个数;
(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象交于,两点,与轴交于点,与轴交于点,已知点坐标为,点的坐标为.
(1)求反比例函数的解析式和一次函数的解析式;
(2)连结,求的面积;
(3)观察图象直接写出时的取值范围是 ;
(4)直接写出:为轴上一动点,当三角形为等腰三角形时点的坐标 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把一张长方形纸片 ABCD 折叠起来,使其对角顶点 A,C 重合,若其长 BC 为 9,宽 AB 为 3.
⑴求证:△AEF 是等腰三角形;
⑵EF= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)(观察思考):如图,线段AB上有两个点C、D,图中共有 条线段;
(2)(模型构建):如果线段上有m个点(包括线段的两个端点),则该线段上共有 条线段.请简要说明结论的正确性;
(3)(拓展应用):8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行 场比赛.类比(模型构建)简要说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com