精英家教网 > 初中数学 > 题目详情
18.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠BOC,求∠EOF的度数.

分析 根据角平分线定义得出∠BOF=$\frac{1}{2}$∠BOC,∠BOE=$\frac{1}{2}∠BOD$,根据∠BOD+∠BOC=180°求出即可.

解答 解:∵OE平分∠BOD,OF平分∠BOC,
∴∠BOF=$\frac{1}{2}$∠BOC,∠BOE=$\frac{1}{2}∠BOD$,
∵∠BOD+∠BOC=180°,
∴$∠BOF+∠BOE=\frac{1}{2}$(∠BOC+∠BOD)=90°,
∴∠EOF=90°.

点评 本题考查了角平分线定义和邻补角等知识点能根据角平分线定义得出∠BOF=$\frac{1}{2}$∠BOC和∠BOE=$\frac{1}{2}∠BOD$是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,直角坐标系中的△ABC的三个顶点分别为A(-5,0),B(-1,-4),C(-1,0).
(1)直接写出AB的中点M关于y轴的对称点M′的坐标;
(2)画出△ABC关于点O的中心对称图形△A′B′C′;
(3)以点C′为旋转中心,将点M′逆时针旋转,旋转角为α(0°<α<180°),直接写出使点M′落在△A′B′C′内部时a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,AB为⊙O的直径,E是⊙O外一点,过点E作⊙O的两条切线ED、EB,切点分别为点D,B,连接AD并延长交BE延长线于点C,连接OE.
(1)试判断OE与AC的关系,并说明理由;
(2)填空:
①当∠BAC=45°时,四边形ODEB是正方形.
②当∠BAC=30°时,$\frac{AD}{DE}$的值为4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为(  )
A.30°B.32°C.42°D.58°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解不等式组:$\left\{\begin{array}{l}{2x≤3(x+2)-5①}\\{\frac{1-2x}{4}+\frac{1}{5}<0②}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为$\frac{15+\sqrt{33}}{3}$或$\frac{15-\sqrt{33}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)点D从B向C运动时,∠BDA逐渐变小(填“大”或“小”);设∠BAD=x°,∠BDA=y°,求y与x的函数关系式;
(2)当DC的长度是多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状也在改变,当∠BDA等于多少度时,△ADE是等腰三角形?判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪.如图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°
(1)求B,C的距离.  
(2)通过计算,判断此轿车是否超速.(tan31°≈0.6,tan50°≈1.2,结果精确到1m)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知有甲、乙两个不透明的袋子,甲袋内装有标记数字-1,2,3的三张卡片,乙袋内装有标记数字2,3,4的三张卡片(卡片除数字不同其余都相同).先从甲袋中随机抽取一张卡片,记录下数字,再从乙袋中随机抽取一张卡片,记录下数字.
(1)利用列表或画树状图的方法(只选其中一种)表示出所抽两张卡片上数字之积所有可能的结果:
(2)求抽出的两张卡片上的数字之积是3的倍数的概率.

查看答案和解析>>

同步练习册答案