分析 首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.
解答 解:过A作AE⊥BC,
∵AB=AC,
∴EC=BE=$\frac{1}{2}$BC=4,
∴AE=$\sqrt{{5}^{2}-{4}^{2}}$=3,
∵D是线段BC上的动点(不含端点B、C).
∴3≤AD<5,
∴AD=3或4,
∵线段AD长为正整数,
∴AD的可以有三条,长为4,3,4,
∴点D的个数共有3个,
故答案为:3.
点评 此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AD的最小值,然后求出AD的取值范围.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com