如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.
(1)证明PA是⊙O的切线;
(2)求点B的坐标;
(3)求直线AB的解析式.
[答案](1)证明:依题意可知,A(0,2) ∵A(0,2),P(4,2), ∴AP∥x轴. ∴∠OAP=90°,且点A在⊙O上, ∴PA是⊙O的切线; (2)解法一:连接OP,OB,作PE⊥x轴于点E,BD⊥x轴于点D, ∵PB切⊙O于点B, ∴∠OBP=90°,即∠OBP=∠PEC, 又∵OB=PE=2,∠OCB=∠PEC. ∴△OBC≌△PEC. ∴OC=PC. (或证Rt△OAP≌△OBP,再得到OC=PC也可) 设OC=PC=x, 则有OE=AP=4,CE=OE-OC=4-x, 在Rt△PCE中,∵PC2=CE2+PE2, ∴x2=(4-x)2+22,解得x=, 4分 ∴BC=CE=4-=, ∵OB·BC=OC·BD,即×2×=××BD,∴BD=. ∴OD===, 由点B在第四象限可知B(,); 解法二:连接OP,OB,作PE⊥x轴于点E,BD⊥y轴于点D, ∵PB切⊙O于点B, ∴∠OBP=90°即∠OBP=∠PEC. 又∵OB=PE=2,∠OCB=∠PEC, ∴△OBC≌△PEC. ∴OC=PC(或证Rt△OAP≌△OBP,再得到OC=PC也可) 设OC=PC=x, 则有OE=AP=4,CE=OE-OC=4-x, 在Rt△PCE中,∵PC2=CE2+PE2, ∴x2=(4-x)2+22,解得x=, 4分 ∴BC=CE=4-=, ∵BD∥x轴, ∴∠COB=∠OBD, 又∵∠OBC=∠BDO=90°, ∴△OBC∽△BDO,∴==, 即==. ∴BD=,OD=. 由点B在第四象限可知B(,); (3)设直线AB的解析式为y=kx+b, 由A(0,2),B(,),可得; 解得∴直线AB的解析式为y=-2x+2. [考点解剖]本题考查了切线的判定、全等、相似、勾股定理、等面积法求边长、点的坐标、待定系数法求函数解析式等. [解题思路](1)点A在圆上,要证PA是圆的切线,只要证PA⊥OA(∠OAP=90°)即可,由A、P两点纵坐标相等可得AP∥x轴,所以有∠OAP+∠AOC=180°得∠OAP=90°;(2)要求点B的坐标,根据坐标的意义,就是要求出点B到x轴、y轴的距离,自然想到构造Rt△OBD,由PB又是⊙O的切线,得Rt△OAP≌△OBP,从而得△OPC为等腰三角形,在Rt△PCE中,PE=OA=2,PC+CE=OE=4,列出关于CE的方程可求出CE、OC的长,△OBC的三边的长知道了,就可求出高BD,再求OD即可求得点B的坐标;(3)已知点A、点B的坐标用待定系数法可求出直线AB的解析式. [解答过程]略. [方法规律]从整体把握图形,找全等、相似、等腰三角形;求线段的长要从局部入手,若是直角三角形则用勾股定理,若是相似则用比例式求,要掌握一些求线段长的常用思路和方法. [关键词]切线 点的坐标 待定系数法求解析式 |
科目:初中数学 来源: 题型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中数学 来源: 题型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中数学 来源: 题型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com