在等腰△ABC中,
(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________;
(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.
①根据题意在图2中补全图形;
②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:
思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;
思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;
思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;
……
请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)
(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明)
科目:初中数学 来源:2017届北京市东城区九年级5月综合练习(一模)数学试卷(解析版) 题型:解答题
在等腰△ABC中,
(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________;
(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.
①根据题意在图2中补全图形;
②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:
思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;
思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;
思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;
……
请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)
(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明)
查看答案和解析>>
科目:初中数学 来源:2017届北京市东城区九年级5月综合练习(一模)数学试卷(解析版) 题型:单选题
某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是( )
A. 1.2,1.3 B. 1.3,1.3 C. 1.4,1.35 D. 1.4,1.3
查看答案和解析>>
科目:初中数学 来源:2017届北京市东城区九年级5月综合练习(一模)数学试卷(解析版) 题型:解答题
如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.
(1)求证:BF=CD;
(2)连接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四边形ABCD的周长.
查看答案和解析>>
科目:初中数学 来源:2017届北京市东城区九年级5月综合练习(一模)数学试卷(解析版) 题型:填空题
下面是“以已知线段为直径作圆”的尺规作图过程.
已知:线段AB.
求作:以AB为直径的⊙O.
作法:如图,
(1)分别以A,B为圆心,大于AB的长为半径
作弧,两弧相交于点C,D;
(2)作直线CD交AB于点O;
(3)以O为圆心,OA长为半径作圆.
则⊙O即为所求作的.
请回答:该作图的依据是_______________________________________________.
查看答案和解析>>
科目:初中数学 来源:2016-2017学年河南省南阳市新野县八年级下学期期中考试数学试卷(解析版) 题型:解答题
如图所示,P(a,3)是直线y=x+5上的一点,直线 y=k1x+b与双曲线相交于P、Q(1,m).
(1)求双曲线的解析式及直线PQ的解析式;
(2)根据图象直接写出不等式>k1x+b的解集.
(3)若直线y=x+5与x轴交于A,直线y=k1x+b与x轴交于M求△APQ的面积
查看答案和解析>>
科目:初中数学 来源:2017年山东省滨州市中考冲刺数学试卷(解析版) 题型:单选题
若y=kx﹣4的函数值y随x的增大而减小,则k的值可能是下列的( )
A. ﹣4 B. 0 C. 1 D. 3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com