精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,二次函数y1=mx2+(m-3)x-3(m>0)的图象与x轴交于A、B两点(点A在精英家教网点B的左侧),与y轴交于点C.
(1)求点A的坐标;
(2)当∠ABC=45°时,求m的值;
(3)已知一次函数y2=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.
分析:(1)令y=0,则求得两根,又由点A在点B左侧且m>0,所以求得点A的坐标;
(2)二次函数的图象与y轴交于点C,即求得点C,由∠ABC=45°,从而求得;
(3)由m值代入求得二次函数式,并能求得交点坐标,则代入一次函数式即求得.
解答:解:(1)∵点A、B是二次函数y=mx2+(m-3)x-3(m>0)的图象与x轴的交点,
∴令y=0,即mx2+(m-3)x-3=0
解得x1=-1,x2=
3
m

又∵点A在点B左侧且m>0精英家教网
∴点A的坐标为(-1,0)

(2)由(1)可知点B的坐标为(
3
m
,0)

∵二次函数的图象与y轴交于点C
∴点C的坐标为(0,-3)
∵∠ABC=45°
∴OB=
3
m
=3

∴m=1

(3)由(2)得,二次函数解析式为y1=x2-2x-3,
∵只有当-2<n<2时,点M位于点N的上方,
∴当-2<n<2时,y1<y2
即一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,
由此可得交点坐标为(-2,5)和(2,-3),精英家教网
将交点坐标分别代入一次函数解析式y=kx+b中,
-2k+b=5
2k+b=-3
,解得:
k=-2
b=1

∴一次函数解析式为y=-2x+1.
点评:本题考查了二次函数的综合运用,(1)令y=0则求得两根,又由AB位置确定m>0,即求得;(2)二次函数的图象与y轴交于点C,再由45度从而求得.(3)由m值代入求得二次函数式,求得交点坐标,则代入一次函数式即求得.本题比较模糊,按照一般计算,代入即求得.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案