精英家教网 > 初中数学 > 题目详情
20.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为$\frac{3}{8}$.

分析 用白球的个数除以球的总个数即可求得摸到白球的概率.

解答 解:∵在一个不透明的口袋中装有5个红球和3个白球,
∴任意从口袋中摸出一个球来,摸到白球的概率为$\frac{3}{5+3}$=$\frac{3}{8}$;
故答案为:$\frac{3}{8}$.

点评 本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.先化简,再求值:x(x-2)-(x+2)(x-2),其中x=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图是由24个边长为1的小正方形组成的6×4网格,此时小正方形的顶点称为格点,顶点在格点上的三角形称为格点三角形.已知△ABC中,AB=2,AC=$\sqrt{5}$,BC=$\sqrt{13}$.
(1)在图1所给的网格中画出格点△ABC;
(2)在图2所给的网格中共能画出4个与△ABC相似且面积最大的格点三角形,并画出其中一个(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.
(1)求证:△ABC≌△EBF;
(2)试判断BD与⊙O的位置关系,并说明理由;
(3)若AB=1,求HG•HB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知x=$\frac{1}{2+\sqrt{3}}$,求$\frac{{x}^{2}-4x-2}{x-2}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.若a是33的立方根,$\sqrt{{4}^{2}}$的平方根是b,则$\sqrt{a+b}$=$\sqrt{5}$或1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,扇形纸扇完全打开后,外侧两竹条AB、AC夹角为120°,AB的长为30cm,无贴纸部分AD的长为10cm,则贴纸部分的面积等于$\frac{800}{3}$πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知实数a,b满足$\sqrt{a+1}$$+\sqrt{b-1}$=0,求a2012+b2013的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.计算$\frac{\sqrt{3}-3}{\sqrt{3}}$的结果是1-$\sqrt{3}$.

查看答案和解析>>

同步练习册答案