精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数ykx+b的图象与反比例函数y的图象交于AB两点.

1)利用图中的条件,求反比例函数和一次函数的解析式.

2)求△AOB的面积.

3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.

【答案】(1)yx﹣1;(2);(3)x>2或﹣1<x<0

【解析】

(1)将A坐标代入反比例解析式中求出m的值,确定出反比例解析式,再讲B坐标代入反比例解析式中求出a的值,确定出B的坐标,将AB坐标代入一次函数求出kb的值,即可确定出一次函数解析式;
(2)对于一次函数,令y=0求出x的值,确定出C的坐标,即OC的长,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;
(3)在图象上找出一次函数值大于反比例函数值时x的范围即可.

(1)把A(2,1)代入y=,得:m=2,

∴反比例函数的解析式为y=

B(﹣1,n)代入y=,得:n=﹣2,即B(﹣1,﹣2),

将点A(2,1)、B(﹣1,﹣2)代入y=kx+b,

得:

解得:

∴一次函数的解析式为y=x﹣1;

(2)在一次函数y=x﹣1中,令y=0,得:x﹣1=0,解得:x=1,

SAOB×1×1+×1×2=

(3)由图象可知,当x>2或﹣1<x<0时,一次函数的值大于反比例函数的值

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知:二次函数yx2+bx+c的图象与x轴交于AB两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上,

(1)求抛物线的表达式;

(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;

(3)若抛物线上有一动点M(点C除外),使△ABM的面积等于△ABC的面积,求M点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O内切于RtABC,点P、点Q分别在直角边BC、斜边AB上,PQAB,且PQ与⊙O相切,若AC2PQ,则tanB的值为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题情境)如图中,,我们可以利用相似证明,这个结论我们称之为射影定理,试证明这个定理;

(结论运用)如图,正方形的边长为,点是对角线的交点,点上,过点,垂足为,连接

(1)试利用射影定理证明

(2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若实数 mn 满足m+nmn,且n≠0时,就称点 Pm)为完美点,若反比例函数y的图象上存在两个完美点AB,且 AB4,则 k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图(1),点EF分别在正方形ABCD的边BCCD上,∠EAF=45°试判断BEEFFD之间的数量关系.

【发现证明】小聪把ABE绕点A逆时针旋转90°ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.

【类比引申】如图(2),四边形ABCD中,∠BAD≠90°AB=ADB+D=180°,点EF分别在边BCCD上,则当∠EAF与∠BAD满足  关系时,仍有EF=BE+FD请证明你的结论.

【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°ADC=120°BAD=150°,道路BCCD上分别有景点EF,且AEADDF=401米,现要在EF之间修一条笔直道路,求这条道路EF的长.(结果取整数,参考数据: =1.41 =1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,点D在边AB上,点E在线段CD上,且∠ACD=B=BAE.

1)求证:

2)当点ECD中点时,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ABMN和正方形ACDE,CN、BE交于点P. 求证:∠ANC = ∠ABE.

应用:Q是线段BC的中点,连结PQ. 若BC = 6,则PQ = ___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,反比例函数y= 的图象与一次函数y=x+b的图象交

于点A(1,4)、点B(-4,n).

(1)求一次函数和反比例函数的解析式;

(2)求△OAB的面积;

(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.

查看答案和解析>>

同步练习册答案