精英家教网 > 初中数学 > 题目详情
直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8。P是AC上的一个动点,当P在AC上运动时,设PC=x,△ABP 的面积为y.
(1)求AC边上的高是多少?
(2)求y与x之间的关系式。
(1)4.8;(2)y=-2.4x+24

试题分析:(1)根据等面积法求解即可;
(2)作PD⊥AB,可得△ADP∽△ABC,根据相似三角形的性质,可用x表示出PD的长,根据SABP=AB×PD,代入数值,即可求出y与x之间的关系式.
解:(1)设AC边上的高是x,由题意得

解得
答:AC边上的高是4.8;
(2)作PD⊥AB

∴△ADP∽△ABC,


∴y与x之间的关系式为:y=-2.4x+24.
点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,连接QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.

(1)求y关于x的函数解析式,并写出x的取值范围;
(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;
(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;
①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC.
其中正确的个数是

A.1         B.2        C.3        D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M。

(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于

A.          B.             C.             D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,添加一个条件:     ,使△ADE∽△ACB,(写出一个即可)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB,AD的中点,则△AEF与多边形BCDFE的面积之比为
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长等于
A.8B.9.5C.10D.11.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如下左图,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD·AB.其中能够单独判定△ABC∽△ACD的条件个数为  

A.1              B.2                C.3                D.4

查看答案和解析>>

同步练习册答案