精英家教网 > 初中数学 > 题目详情
8.先化简,再求值:($\frac{{x}^{2}-4}{{x}^{2}-4x+4}$-$\frac{x}{{x}^{2}-2x}$)(x-$\frac{4}{x}$),其中x=-$\frac{1}{2}$.

分析 先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.

解答 解:原式=($\frac{x+2}{x-2}$-$\frac{1}{x-2}$)•$\frac{(x+2)(x-2)}{x}$
=$\frac{x+1}{x-2}$•$\frac{(x+2)(x-2)}{x}$
=$\frac{(x+1)(x+2)}{x}$,
当x=-$\frac{1}{2}$时,原式=$\frac{(-\frac{1}{2}+1)(-\frac{1}{2}+2)}{-\frac{1}{2}}$=-$\frac{3}{2}$.

点评 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.若方程组$\left\{\begin{array}{l}{4x+3y=5}\\{kx-(k-1)y=8}\end{array}\right.$的解中x的值与y的值之和等于1,则k的值为3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.把$\frac{\sqrt{a}}{\sqrt{b}}$=$\sqrt{\frac{a}{b}}$反过来就可以进行二次根式的化简.
$\sqrt{\frac{a}{b}}$=$\frac{\sqrt{(\;\;\;\;)}}{\sqrt{(\;\;\;\;)}}$(a≥0,b>0)
(1)$\sqrt{\frac{3}{100}}$=$\frac{\sqrt{3}}{10}$;(2)$\sqrt{\frac{75}{27}}$=$\frac{5}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.对于平行线,我们有这样的结论:如图1,AB∥CD,AD,BC交于点O,则$\frac{AO}{DO}$=$\frac{BO}{CO}$.
请利用该结论解答下面的问题:
如图2,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图所示,AB是半圆O的直径,点P从点A出发,沿A→B→O→A的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,一次函数y=-x+m与y轴交于点B,与正比例函数y=$\frac{1}{2}$x的图象交于点P(2,n).
(1)求m,n的值;
(2)写出当一次函数的函数值大于正比例函数的函数值时的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在△ABC中,点E是AC上一点,DE∥BC,∠1=∠B,AD=AE.求证:AB=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知矩形OABC在如图所示平面直角坐标系中,点B的坐标为(4,3),连接AC.动点P从点B出发,以2cm/s的速度,沿直线BC方向运动,运动到C为止,过点P作PQ∥AC交线段BA于点Q,以PQ为边向下作正方形PQMN,设正方形PQMN与△ABC重叠部分图形面积为S(cm2),设点P的运动时间为t(s).
(1)请用含t的代数式表示N点的坐标;
(2)求S与t之间的函数关系式,并指出t的取值范围;
(3)如图②,点G在边OC上,且OG=1cm,在点P从点B出发的同时,另有一动点E从点O出发,以2cm/s的速度,沿x轴正方向运动,以OG、OE为一组邻边作矩形OEFG.试求当点F落在正方形PQMN的内部(不含边界)时t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.在(x+1)(2x2-ax+1)的运算结果中x2的系数是-6,那么a的值是8.

查看答案和解析>>

同步练习册答案