精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,AB=BC,∠ABC=90°.以AB为斜边作等腰直角三角形ADB.点P是直线DB上一个动点,连接AP,作PE⊥AP交BC所在的直线于点E.

(1)如图1,点P在BD的延长线上,PE⊥EC,AD=1,直接写出PE的长;
(2)点P在线段BD上(不与B,D重合),依题意,将图2补全,求证:PA=PE;
(3)点P在DB的延长线上,依题意,将图3补全,并判断PA=PE是否仍然成立.

【答案】
(1)

解:∵AD=DB=1,∠ADB=90°,

∴∠ABP=45°,AB= =

∵PE⊥AP,AB⊥BC,

∴PA∥EC,

∴PA⊥AB,

∴四边形ABEP是矩形,

∵∠ABP=45°,

∴PA=AB,

∴四边形ABEP是正方形,

∴PE=AB=


(2)

解:∵△ABC和△ADB是等腰直角三角形,

∴∠ADB=90°,∠DAB=∠DBA=45°,

∴∠PBN=45°

∴PE⊥AP,∠DAP=∠BPE=90°﹣∠DPA,

∵∠PAM=45°﹣∠DAP,∠PEN=45°﹣∠BPE,

∴∠PAM=∠PEN,

过P作PM⊥AB于点M,过P作PN⊥BC于点N,

则PM=PN,∠BPN=45°,

在△APM和△EPN中,

∴△APM≌△EPN,

∴PA=PE;


(3)

解:∵△ABC和△ADB是等腰直角三角形,

∴∠ABD=45°,

∴∠PBN=45°,∠ABC=90°,

过P作PM⊥AB于点M,过P作PN⊥BC于点N,

则四边形BMPN是矩形,

∵∠NBP=45°,

∴四边形BMPN是正方形,

∴PM=PN,

∵AB⊥BC,

∴∠BAN=∠APN,

∵AP⊥PE,

∴∠APN=∠E,

∴∠BAP=∠E,

在△AMP与△ENP中,

∴△AMP≌△ENP,

∴AP=PE.


【解析】(1)根据等腰直角三角形的性质得到∠ABP=45°,根据勾股定理得到AB= = ,推出四边形ABEP是矩形,得到四边形ABEP是正方形,于是得到结论;(2)根据等腰直角三角形的性质得到∠ADB=90°,∠DAB=∠DBA=45°,求得∠PBN=45°过P作PM⊥AB于点M,过P作PN⊥BC于点N,于是得到PM=PN,∠BPN=45°根据全等三角形的性质即可得到结论;(3)根据等腰直角三角形的性质得到∠ABD=45°,得到∠PBN=45°,∠ABC=90°,过P作PM⊥AB于点M,过P作PN⊥BC于点N,得到四边形BMPN是矩形,推出四边形BMPN是正方形,得到PM=PN,根据全等三角形的性质即可得到结论.
【考点精析】掌握等腰直角三角形和正方形的判定方法是解答本题的根本,需要知道等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;先判定一个四边形是矩形,再判定出有一组邻边相等;先判定一个四边形是菱形,再判定出有一个角是直角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1 , x2
(1)求m的取值范围;
(2)当x12+x22=6x1x2时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,AC=BC,D为△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=AC.

(1)求∠CDE的度数;

(2)若点M在DE上,且DC=DM,求证:ME=BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线y=2x+1与双曲线y= 的一个交点为A(m,﹣3).
(1)求双曲线的表达式;
(2)过动点P(n,0)(n<0)且垂直于x轴的直线与直线y=2x+1和双曲线y= 的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数y= x的图象与性质. 小东根据学习函数的经验,对函数y= x的图象与性质进行了探究.
下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数y= x的自变量x的取值范围是
(2)下表是y与x的几组对应值,求m的值;

x

﹣4

﹣3

﹣2

﹣1

1

2

3

4

y

m


(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(﹣2, ),结合函数的图象,写出该函数的其它性质(一条即可)
(5)根据函数图象估算方程 x=2的根为 . (精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BDACD.若∠A:ABC:ACB=3:4:5,E为线段BD上任一点.

(1)试求∠ABD的度数;

(2)求证:∠BEC>∠A.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名同学相距20m,他们同时出发,同向而行,甲在乙后,图中L1、L2分别表示他们二人的路程与时间的关系,看图回答下列问题:

(1)20s时甲跑了多少米?乙跑了多少米?

(2)甲用几秒钟可追上乙?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】雷达二维平面定位的主要原理是:测量目标的两个信息距离和角度,目标的表示方法为,其中,m表示目标与探测器的距离;表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为目标C的位置表示为.用这种方法表示目标B的位置,正确的是(

A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长分别为2和4的两个全等三角形,开始它们在左边重叠,大△ABC固定不动,然后把小△A′B′C′自左向右平移,直至移到点B′到C重合时停止,设小三角形移动的距离为x,两个三角形的重合部分的面积为y,则y关于x的函数图象是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案