【题目】在△ABC中,AB=BC,∠ABC=90°.以AB为斜边作等腰直角三角形ADB.点P是直线DB上一个动点,连接AP,作PE⊥AP交BC所在的直线于点E.
(1)如图1,点P在BD的延长线上,PE⊥EC,AD=1,直接写出PE的长;
(2)点P在线段BD上(不与B,D重合),依题意,将图2补全,求证:PA=PE;
(3)点P在DB的延长线上,依题意,将图3补全,并判断PA=PE是否仍然成立.
【答案】
(1)
解:∵AD=DB=1,∠ADB=90°,
∴∠ABP=45°,AB= = ,
∵PE⊥AP,AB⊥BC,
∴PA∥EC,
∴PA⊥AB,
∴四边形ABEP是矩形,
∵∠ABP=45°,
∴PA=AB,
∴四边形ABEP是正方形,
∴PE=AB=
(2)
解:∵△ABC和△ADB是等腰直角三角形,
∴∠ADB=90°,∠DAB=∠DBA=45°,
∴∠PBN=45°
∴PE⊥AP,∠DAP=∠BPE=90°﹣∠DPA,
∵∠PAM=45°﹣∠DAP,∠PEN=45°﹣∠BPE,
∴∠PAM=∠PEN,
过P作PM⊥AB于点M,过P作PN⊥BC于点N,
则PM=PN,∠BPN=45°,
在△APM和△EPN中, ,
∴△APM≌△EPN,
∴PA=PE;
(3)
解:∵△ABC和△ADB是等腰直角三角形,
∴∠ABD=45°,
∴∠PBN=45°,∠ABC=90°,
过P作PM⊥AB于点M,过P作PN⊥BC于点N,
则四边形BMPN是矩形,
∵∠NBP=45°,
∴四边形BMPN是正方形,
∴PM=PN,
∵AB⊥BC,
∴∠BAN=∠APN,
∵AP⊥PE,
∴∠APN=∠E,
∴∠BAP=∠E,
在△AMP与△ENP中, ,
∴△AMP≌△ENP,
∴AP=PE.
【解析】(1)根据等腰直角三角形的性质得到∠ABP=45°,根据勾股定理得到AB= = ,推出四边形ABEP是矩形,得到四边形ABEP是正方形,于是得到结论;(2)根据等腰直角三角形的性质得到∠ADB=90°,∠DAB=∠DBA=45°,求得∠PBN=45°过P作PM⊥AB于点M,过P作PN⊥BC于点N,于是得到PM=PN,∠BPN=45°根据全等三角形的性质即可得到结论;(3)根据等腰直角三角形的性质得到∠ABD=45°,得到∠PBN=45°,∠ABC=90°,过P作PM⊥AB于点M,过P作PN⊥BC于点N,得到四边形BMPN是矩形,推出四边形BMPN是正方形,得到PM=PN,根据全等三角形的性质即可得到结论.
【考点精析】掌握等腰直角三角形和正方形的判定方法是解答本题的根本,需要知道等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;先判定一个四边形是矩形,再判定出有一组邻边相等;先判定一个四边形是菱形,再判定出有一个角是直角.
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1 , x2 .
(1)求m的取值范围;
(2)当x12+x22=6x1x2时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,D为△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=AC.
(1)求∠CDE的度数;
(2)若点M在DE上,且DC=DM,求证:ME=BD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线y=2x+1与双曲线y= 的一个交点为A(m,﹣3).
(1)求双曲线的表达式;
(2)过动点P(n,0)(n<0)且垂直于x轴的直线与直线y=2x+1和双曲线y= 的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有这样一个问题:探究函数y= ﹣ x的图象与性质. 小东根据学习函数的经验,对函数y= ﹣ x的图象与性质进行了探究.
下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数y= ﹣ x的自变量x的取值范围是;
(2)下表是y与x的几组对应值,求m的值;
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣ | ﹣1 | ﹣ |
| 1 | 2 | 3 | 4 | … |
y | … |
|
|
|
|
|
|
|
| ﹣ | ﹣ | m | … |
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(﹣2, ),结合函数的图象,写出该函数的其它性质(一条即可) .
(5)根据函数图象估算方程 ﹣ x=2的根为 . (精确到0.1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BD⊥AC于D.若∠A:∠ABC:∠ACB=3:4:5,E为线段BD上任一点.
(1)试求∠ABD的度数;
(2)求证:∠BEC>∠A.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名同学相距20m,他们同时出发,同向而行,甲在乙后,图中L1、L2分别表示他们二人的路程与时间的关系,看图回答下列问题:
(1)20s时甲跑了多少米?乙跑了多少米?
(2)甲用几秒钟可追上乙?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】雷达二维平面定位的主要原理是:测量目标的两个信息―距离和角度,目标的表示方法为,其中,m表示目标与探测器的距离;表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为,目标C的位置表示为.用这种方法表示目标B的位置,正确的是( )
A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长分别为2和4的两个全等三角形,开始它们在左边重叠,大△ABC固定不动,然后把小△A′B′C′自左向右平移,直至移到点B′到C重合时停止,设小三角形移动的距离为x,两个三角形的重合部分的面积为y,则y关于x的函数图象是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com