精英家教网 > 初中数学 > 题目详情

如图,已知△ABC的内切圆⊙O分别和边BC,AC,AB切于D,E,F,如果AF=2,BD=7,CE=4.

(1)求△ABC的三边长;

(2)如果P为上一点,过P作⊙O的切线,交AB于M,交BC于N,求△BMN的周长.

 

【答案】

(1)AB=9,BC=11,AC=6;(2)14 

【解析】

试题分析:(1)根据切线长定理可得AE=AF=2,BF=BD=7,CD=CE=4,即可求得△ABC的三边长;

(2)根据切线长定理可得MP=MF,NP=ND,即可求得结果。

(1)∵⊙O分别和边BC,AC,AB切于点D,E,F,

∴AE=AF=2,BF=BD=7,CD=CE=4,

∴AB= AF+ BF=9,BC= BD+ CD=11,AC= AE+ CE=6;

(2)∵⊙O分别和BC,AB,MN切于点D,F,P,

∴MP=MF,NP=ND,

∴MP+ NP =MF+ND,

∴BM+MN+BN=BM+MP+ NP+ BN= BM+ MF+ND+ BN= BF+BD=14,

则△BMN的周长为14.

考点:本题考查的是三角形的内切圆与内心,切线长定理

点评:解答本题的关键是熟练掌握切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC的面积S△ABC=1.
在图1中,若
AA1
AB
=
BB1
BC
=
CC1
CA
=
1
2
,则S△A1B1C1=
1
4

在图2中,若
AA2
AB
=
BB2
BC
=
CC2
CA
=
1
3
,则S△A2B2C2=
1
3

在图3中,若
AA3
AB
=
BB3
BC
=
CC3
CA
=
1
4
,则S△A3B3C3=
7
16

按此规律,若
AA8
AB
=
BB8
BC
=
CC8
CA
=
1
9
,S△A8B8C8=
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC的面积为4,且AB=AC,现将△ABC沿CA方向平移CA的长度,得到△EFA.
(1)判断AF与BE的位置关系,并说明理由;
(2)若∠BEC=15°,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•温州二模)如图,已知△ABC的面积是2平方厘米,△BCD的面积是3平方厘米,△CDE的面积是3平方厘米,△DEF的面积是4平方厘米,△EFG的面积是3平方厘米,△FGH的面积是5平方厘米,那么,△EFH的面积是
4
4
 平方厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•孝感模拟)如图,已知△ABC的三个顶点的坐标分别为A(-2,2)、B(-5,0)、C(-1,0).
(1)请直接写出点A关于y轴对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°得到△A1B1C1,再将△A1B1C1以C1为位似中心,放大2倍得到△A2B2C1,请画出△A1B1C1和△A2B2C1,并写出一个点A2的坐标.(只画一个△A2B2C1即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC的三个顶点的坐标分别是A(-7,1),B(-3,3),C(-2,6).
(1)求作一个三角形,使它与△ABC关于y轴对称;
(2)写出(1)中所作的三角形的三个顶点的坐标.

查看答案和解析>>

同步练习册答案