精英家教网 > 初中数学 > 题目详情
15.如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.求证:AA′=CE.

分析 根据正方形的性质得AD=CD,∠ADC=90°,∠CAB=45°,则∠A′DE=90°,再根据旋转的性质得∠CA′B′=∠CAB=45°,则∠A′ED=45°,于是可得A′D=DE,然后根据“SAS”可判断△AA′D≌△CED,则根据全等三角形的性质即可得到结论.

解答 证明:∵四边形ABCD是正方形,
∴AD=CD,∠ADC=90°,
∴∠A′DE=90°,
∵正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′,
∴∠CA′B′=45°,
∴∠A′ED=45°,
∴A′D=DE,
在△AA′D和△CED中,
$\left\{\begin{array}{l}{AD=CD}\\{∠ADA′=∠CDE}\\{A′D=ED}\end{array}\right.$,
∴△AA′D≌△CED(SAS),
∴AA′=CE.

点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和正方形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.解方程:(3x-2)(x+1)=x(2x-1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,某化工厂C与A、B两地有公路、跌路相连.这家工厂从A地购买一批每吨1000元的原料回工厂,制成若干每吨8000元的产品运回B地.已知公路运价为1.5元/(吨.千米),铁路运价为1.2元/(吨.千米),若这两次运输共支出铁路运费97200元,且这批产品的销售款比原料费与运输费的和多1887800元.这两次运输共支出公路运输费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)$\frac{{\sqrt{2}+1}}{{\sqrt{2}-1}}$-4cos45°+(π-$\sqrt{2}$)0×${(-\frac{1}{3})^{-1}}$;
(2)$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{99×101}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知x=$\frac{{4-\sqrt{7}}}{3}$,则$\frac{x^2}{{{x^4}+{x^2}+1}}$=$\frac{9}{55}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图所示,在三角形中已知两边之长分别为a,b(a<b),那么第三边上的中线的长度x的取值范围是$\frac{b-a}{2}$<x<$\frac{b+a}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列式子:$\sqrt{{{(-3)}^2}},\sqrt{-5},\sqrt{8},\sqrt{{a^2}-1},\sqrt{{a^2}+1},\sqrt{4-4a+{a^2}},\root{3}{5}$中,一定是二次根式有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知x=$\sqrt{3}$+1,那么代数式$\frac{{{x^4}+4}}{{{x^2}+2x+2}}$的值为4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1,Rt△ABC中,∠A=90°,tanB=$\frac{3}{4}$,点P在线段AB上运动,点Q、R分别在线段BC、AC上,且使得四边形APQR是矩形.设AP的长为x,矩形APQR的面积为y,已知y是x的函数,其图象是过点(12,36)的抛物线的一部分(如图2所示).
(1)求AB的长;
(2)当AP为何值时,矩形APQR的面积最大,并求出最大值.
为了解决这个问题,孔明和研究性学习小组的同学作了如下讨论:
张明:图2中的抛物线过点(12,36)在图1中表示什么呢?
李明:因为抛物线上的点(x,y)是表示图1中AP的长与矩形APQR面积的对应关系,那么,(12,36)表示当AP=12时,AP的长与矩形APQR面积的对应关系.
赵明:对,我知道纵坐标36是什么意思了!
孔明:哦,这样就可以算出AB,这个问题就可以解决了.
请根据上述对话,帮他们解答这个问题.

查看答案和解析>>

同步练习册答案