【题目】如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF∥CE.
(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.
【答案】(1)、证明过程见解析;(2)、∠B=30°;理由见解析
【解析】
试题分析:(1)、根据DE垂直平分BC可得∠EDB=90°,得到DE∥AC,结合AF∥CE得到平行四边形;(2)、根据DE垂直平分BC得到BE=EC,∠B=∠BCE,根据∠B=30°可得∠BCE=30°,∠AEC=60°,根据∠BCA=90°可得∠BAC=60°,则△ACE为正三角形,得到四边形为菱形.
试题解析:(1)、∵ DE垂直平分BC ∴∠EDB=90° ∴ DE∥AC,即FE∥AC
由∵AF∥CE ∴四边形ACEF是平行四边形
(2)、当∠B=30°时,四边形ACEF是菱形
理由:∵DE垂直平分BC ∴BE=EC ∴∠B=∠BCE ∵∠B=30° ∴∠BCE=30°
∴∠AEC=∠B+∠BCE=60° ∵∠BCA=90° ∴∠BAC=90°-∠B=60°
∴△ACE是等边三角形 ∴AC=EC ∵四边形ACEF是平行四边形 ∴四边形ACEF是菱形
科目:初中数学 来源: 题型:
【题目】为了预防“流感”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧完后,y与x成反比例(如图所示)。现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg。研究表明,当空气中每立方米的含药量不低于3mg才有效,那么此次消毒的有效时间是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点(点分别在轴的左右两侧)两点,与轴的正半轴交于点,顶点为,已知点.
⑴.求点的坐标;
⑵.判断△的形状,并说明理由;
⑶.将△沿轴向右平移个单位()得到△.△与△重叠部分(如图中阴影)面积为,求与的函数关系式,并写出自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,分别以AB、AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G落在点A、E之间,连接EF、CF.则以下四个结论:①CG⊥AE;②△CDF≌△EBC;③∠CDF =∠EAF;④△ECF是等边三角形.其中一定正确的是 .(把正确结论的序号都填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x﹣4的图象与x、y轴交于B、A两点,与y=的图象交于点C,CD⊥x轴于点D,如果△CDB的面积:△AOB的面积=1:4,则k的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】⊙O为△ABC的外接圆,过圆外一点P作⊙O的切线PA,且PA∥BC.
(1)如图1,求证:△ABC为等腰三角形:
(2)如图2,在AB边上取一点E,AC边上取一点F,直线EF交PA于点M,交BC的延长线于点N,若ME=FN,求证:AE=CF;
(3)如图3,在(2)的条件下,连接OE、OF,∠EOF=120°,,EF=,求⊙O的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△AB1C1。若△ABC内有一点P(a,b),则经过两次变换后点P的坐标变为_____________
(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.
(3) 若将△ABC绕某点逆时针旋转90°后,其对应点分别为,则旋转中心坐标为_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com