精英家教网 > 初中数学 > 题目详情

【题目】在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;T型尺(CD所在的直线垂直平分线段AB).

(1)在图1中,请你画出用T形尺找大圆圆心的示意图(保留画图痕迹,不写画法);

(2)如图2,小华说:我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:

将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积如果测得MN=10m,请你求出这个环形花坛的面积.

【答案】(1)如图见解析;(2)25π.

【解析】

(1)直线CDC′D′的交点即为所求的点O.

(2)设切点为C,连接OM,OC.旅游勾股定理即可解决问题.

(1)如图点O即为所求;

(2)设切点为C,连接OM,OC.

MN是切线,

OCMN,

CM=CN=5,

OM2﹣OC2=CM2=25,

S圆环=πOM2﹣πOC2=25π.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,点E,F,G分别是等边三角形ABC三边AB,BC,CA上的动点,且始终保持AE=BF=CG,设EFG的面积为y,AE的长为x,y关于x的函数图象大致为图2所示,则等边三角形ABC的边长为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠1+ 2=180° 以∠A= D.求证:AB//CD.(在每步证明过程后面注明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了解学生到校交通方式情况,随机抽取各年级部分学生就“上下学交通方式”进行问卷调查,调查分为“A:骑自行车;B:步行;C:坐公交车;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图①)和部分扇形统计图(如图②),请根据图中的信息,解答下列问题.

(1)本次调查共抽取 名学生;

(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;

(3)若该中学共有学生3000人,估计有多少学生在上下学交通方式中选择坐公交车?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.

(1)求点C的坐标(用含a的代数式表示);

(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;

(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD是高,CE是中线,DG垂直平分CE连接DE

1)求证:DCBE

2)若∠AEC72°,求∠BCE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,MN分别是CDBC的中点,且AMCDANBC

(1)求证:∠BAD=2MAN

(2)连接BD,若∠MAN=70°,DBC=40°,求∠ADC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2+x+x轴交于点A,B(A在点B的左侧),y轴交于点C.

(1)求点A,B,C的坐标;

(2)若该抛物线的顶点是点D,求四边形OCDB的面积;

(3)已知点P是该抛物线对称轴的一点,若以点P,O,D为顶点的三角形是等腰三角形,请直接写出点P的坐标.(不用说理)

查看答案和解析>>

同步练习册答案