精英家教网 > 初中数学 > 题目详情
6.下列方程式二元一次方程的是(  )
A.$\frac{4}{x}$+y=5B.x-y=2C.$\frac{1}{2}$x2+y=0D.2x+3y=z

分析 二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.

解答 解:A、$\frac{4}{x}$+y=5是分式方程,故A错误;
B、x-y=2二元一次方程,故B正确;
C、$\frac{1}{2}$x2+y=0是二元二次方程,故C正确;
D、2x+3y=z是三元一次方程,故D错误;
故选:B.

点评 主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.?ABCD中,DB⊥AB,AB=12,BC=13,AE平分∠DAB,EF⊥BC,则EF=$\frac{144}{65}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.因式分解
(1)a3-a
(2)2m2-4m+2
(3)16(x+y)2-9(x-y)2
(4)x2(x-1)+1-x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知a是$\sqrt{7}$的整数部分,b是$\sqrt{7}$的小数部分,求a(b-$\sqrt{7}$)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.对于有理数x,y定义新运算:x*y=ax+by-5,其中a,b为常数已知1*2=-9,(-3)*3=-2,则a-b=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.a,b,c是直线,且a∥b,b∥c,则a∥c.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列各图中,∠1和∠2是对顶角的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.阅读材料:
如图1,在平面直角坐标系中,O为坐标原点,对于任意两点A (x1,y1),B(x2,y2),由勾股定理可得:AB2=(x1-x22+(y1-y22,我们把$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$叫做A、B两点之间的距离,记作AB=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$
例题:在平面直角坐标系中,O为坐标原点,设点P(x,0).
①A(0,2),B (3,-2),则AB=5.;PA=$\sqrt{{x}^{2}+4}$.;
解:由定义有AB=$\sqrt{(0-3)^{2}+[2-(-2)]^{2}}=5$;PA=$\sqrt{(x-3)^{2}+(0-2)^{2}}=\sqrt{{x}^{2}+4}$.
②$\sqrt{(x-1)^{2}+4}$表示的几何意义是点P(x,0)到点(1,2)的距
离;$\sqrt{{x}^{2}+1}+\sqrt{(x-2)^{2}+9}$表示的几何意义是点P(x,0)分别到点(0,1)和点(2,3)的距离和.
解:因为$\sqrt{(x-1)^{2}+4}=\sqrt{(x-1)^{2}+(0-2)^{2}}$,所以$\sqrt{(x-1)^{2}+4}$表示的几何意义是点P(x,0)到点(1,2)的距
离;同理可得,$\sqrt{{x}^{2}+1}+\sqrt{(x-2)^{2}+9}$表示的几何意义是点P(x,0)分别到点(0,1)和点(2,3)的距离和.
根据以上阅读材料,解决下列问题:
(1)如图2,已知直线y=-2x+8与反比例函数y=$\frac{6}{x}$(x>0)的图象交于A(x1,y1)、B(x2,y2)两点,
则点A、B的坐标分别为A(1,6),B(3,2),AB=2$\sqrt{5}$.
(2)在(1)的条件下,设点P(x,0),则$\sqrt{(x-{x}_{1})^{2}+{y}_{1}^{2}}+\sqrt{(x-{x}_{2})^{2}+{y}_{2}^{2}}$表示的几何意义是点P(x,0)分别到点(1,6)和点(3,2)的距离和;试求$\sqrt{(x-{x}_{1})^{2}+{y}_{1}^{2}}+\sqrt{(x-{x}_{2})^{2+{y}_{2}^{2}}}$的最小值,以及取得最小值时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.取一副三角板按图1拼接,固定三角板ADC,将三角板ABC绕点A按顺时针方向旋转一个大小为α的角(0°<α≤45°)得三角形ABC′如图所示.试问:
(1)当旋转到图2的位置时,则α=45°;
(2)当α=15°时,能使图3中的AB∥CD;
(3)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的说明.

查看答案和解析>>

同步练习册答案