精英家教网 > 初中数学 > 题目详情
已知:如图,AD∥BE,∠1=∠2,那么∠A=∠E吗?请说明理由.
分析:首先根据条件AD∥BE,可证出∠A=∠3,再证明DE∥CB,根据平行线的性质可得∠E=∠3,最后根据等量代换可以得到∠A=∠E.
解答:解:相等,
理由:∵AD∥BE,
∴∠A=∠3,
∵∠1=∠2,
∴DE∥BC,
∴∠E=∠3,
∴∠A=∠E.
点评:此题主要考查了平行线的判定与性质,关键是熟练掌握平行线的判定定理,以及平行线的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、已知:如图,AD∥BC,ED∥BF,且AF=CE.
求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知,如图,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AD=BC,AC=BD.试判断OD、OC的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,AD∥BC,∠A=90°,AD=BE,∠EDC=∠ECD,请你说明下列结论成立的理由:(1)△AED≌△BCE,(2)AB=AD+BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

根据题意填空:
已知,如图,AD∥BC,∠BAD=∠BCD,求证:AB∥CD.
证明:∵AD∥BC(已知)
∴∠1=
∠2(两直线平行,内错角相等),
∠2(两直线平行,内错角相等),

又∵∠BAD=∠BCD ( 已知 )
∴∠BAD-∠1=∠BCD-∠2
(等式的性质)
(等式的性质)

即:∠3=∠4
AB∥CD(内错角相等,两直线平行)
AB∥CD(内错角相等,两直线平行)

查看答案和解析>>

同步练习册答案