【题目】如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为:A(1,﹣4),B(5,﹣4),C(4,﹣1).
(1)将△ABC经过平移得到△A1B1C1,若点C的应点C1的坐标为(2,5),则点A,B的对应点A1,B1的坐标分别为 ;
(2)在如图的坐标系中画出△A1B1C1,并画出与△A1B1C1关于原点O成中心对称的△A2B2C2.
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.
(1)求证:△ABE≌△ADF;
(2)试判断四边形AECF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:己知:对于实数a≥0,b≥0,满足a+b≥2,当且仅当a = b时,等号成立,此时取得代数式a+b的最小值.
根据以上结论,解决以下问题:
(1)拓展:若a>0,当且仅当a=___时,a+有最小值,最小值为____;
(2)应用:
①如图1,已知点P为双曲线y=(x>0)上的任意一点,过点P作PA⊥x轴,PB丄y轴,四边形OAPB的周长取得最小值时,求出点P的坐标以及周长最小值:
②如图2,已知点Q是双曲线y=(x>0)上一点,且PQ∥x轴, 连接OP、OQ,当线段OP取得最小值时,在平面内取一点C,使得以0、P、Q、C为顶点的四边形是平行四边形,求出点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点O为直线AB上一点,过O点作射线OC,使,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.
(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为______度;
(2)在(1)旋转过程中,当旋转至图3的位置时,使得OM在∠BOC的内部,ON落在直线AB下方,试探究∠COM与∠BON之间满足什么等量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图
(1)指出旋转中心,并求出旋转角的度数.
(2)求出∠BAE的度数和AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列语句中正确的有( )
①经过一点,有且只有一条直线与已知直线平行;②有公共顶点且和为的两个角是邻补角;③两条直线被第三条直线所截,同旁内角互补;④不相交的两条直线叫做平行线;⑤直线外的一点到已知直线的垂线段叫做点到直线的距离;
A.0个;B.1个;C.2个;D.3个;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知∠BDC=∠EFD,∠AED=∠ACB.
(1)试判断∠DEF与∠B的大小关系,并说明理由;
(2)若D、E、F分别是AB、AC、CD边上的中点,S△DEF=4,求S△ABC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形的顶点、在轴上,顶点在轴上,已知,,.
(1)平行四边形的面积为________;
(2)如图1,点是边上的一点,若的面积是平行四边形的,求点的坐标;
(3)如图2,将绕点顺时针旋转,旋转得,在整个旋转过程中,能否使以点、、、为顶点的四边形是平行四边形?若能,求点的坐标;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com