分析 (1)在Rt△BCD中,解直角三角形即可;
(2)欲证明DE是切线,只要证明OD⊥DE即可;
(3)首先证明EF是△ADC的中位线,再证明△ACD∽△ABC即可解决问题;
解答 解:(1)∵BC是直径,
∴∠BDC=90°,
在Rt△BCD中,∵BC=10,∠BCD=36°,
∴BD=BC•sin36°=10•sin36°≈5.9.
(2)连接OD.
∵AE=EC,OB=OC,
∴OE∥AB,
∵CD⊥AB,
∴OE⊥CD,
∵OD=OC,
∴∠DOE=∠COE,
在△EOD和△EOC中,
$\left\{\begin{array}{l}{OD=OC}\\{∠DOE=∠COE}\\{OE=OE}\end{array}\right.$,
∴△EOD≌△EOC,
∴∠EDO=∠ECO=90°,
∴OD⊥DE,
∴DE是⊙O的切线.
(3)∵OE⊥CD,
∴DF=CF,∵AE=EC,
∴AD=2EF,
∵∠CAD=∠CAB,∠ADC=∠ACB=90°,
∴△ACD∽△ABC,
∴AC2=AD•AB,
∵AC=2CE,
∴4CE2=2EF•AB,
∴2CE2=EF•AB.
点评 本题考查相似三角形的判定和性质、切线的判定、三角形的中位线定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2:1 | B. | 1:2 | C. | $\sqrt{2}$:1 | D. | 1:$\sqrt{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com