分析 连接OD,由于AC=BC,易得∠A=∠ABC,而OD=OB,又能得到∠OBD=∠ODB,等量代换可得∠ODB=∠A,利用同位角相等两直线平行可知OD∥AC,而DE⊥AC,那么∠CED=90°,利用平行线性质可得∠ODG=90°,可证DE是⊙O的切线.
解答 证明:连接OD,如图所示,
∵AC=BC,
∴∠A=∠ABC,
∵OD=OB,
∴∠OBD=∠ODB,
∴∠ODB=∠A,
∴OD∥AC,
又∵DE⊥AC,
∴∠CED=90°,
∴∠ODG=90°,
∴OD⊥EG,
∴DE是⊙O的切线.
点评 本题考查了切线的判定、等腰三角形的性质、平行线的判定和性质.解题的关键是连接OD,并证明OD∥AC.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 三角形的角平分线、中线、高都在三角形的内部 | |
B. | 三角形的角平分线、高都在三角形的内部 | |
C. | 三角形的高、中线都在三角形的内部 | |
D. | 三角形的角平分线、中线都在三角形的内部 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com