精英家教网 > 初中数学 > 题目详情
如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.

【答案】分析:欲证AC与⊙O相切,只要证明圆心O到AC的距离等于圆的半径即可,即连接OD,过点O作OE⊥AC于E点,证明OE=OD.
解答:证明:连接OD,过点O作OE⊥AC于E点,
则∠OEC=90°,
∵AB切⊙O于D,
∴OD⊥AB,
∴∠ODB=90°,
∴∠ODB=∠OEC;(3分)
又∵O是BC的中点,
∴OB=OC,
∵AB=AC,
∴∠B=∠C,
∴△OBD≌△OCE,(6分)
∴OE=OD,即OE是⊙O的半径,
∴AC与⊙O相切.(9分)
点评:本题考查了学生对切线的判定的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、如图,△ABC为等腰三角形,AB=AC,∠A=40°,D,E,F分别在BC,AC,AB上,且CE=CD,BD=BF,则∠EDF的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为等腰直角三角形,它的面积为8平方厘米,以它的斜边为边的正方形BCDE的面积为(  )平方厘米.
A、16B、24C、64D、32

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等腰直角三角形∠BAC=90°,AD是斜边BC上的中线,△ABD旋转到△ACE的位置.
(1)旋转中心是哪一点?旋转角度是多少度?
(2)四边形ADCE是正方形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•六合区一模)如图,△ABC为等腰直角三角形,∠C=90°,若在某一平面直角坐标系中,顶点C的坐标为(1,1),B的坐标为(2,0).则顶点A的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等腰三角形,如果把它沿底边BC翻折后,得到△DBC,那么四边形ABDC为(  )

查看答案和解析>>

同步练习册答案