【题目】已知关于x的方程x2﹣mx﹣3x+m﹣4=0(m为常数)
(1)求证:方程有两个不相等的实数根.
(2)设x1,x2是方程的两个实数根,且x1+x2=4,请求出方程的这两个实数根.
【答案】(1)证明见解析;(2)x1=2+,x2=2﹣.
【解析】
(1)求出△=(﹣m﹣3)2﹣4×1×(m﹣4)=m2+2m+25=(m+1)2+24>0,即可得出结论;
(2)由x1+x2=m+3,得出m+3=4,解得m=1,则原方程为x2﹣4x﹣3=0,解方程即可得出结果.
(1)证明:∵x2﹣mx﹣3x+m﹣4=0,即:x2﹣(m+3)x+m﹣4=0,
∴△=(﹣m﹣3)2﹣4×1×(m﹣4)=m2+2m+25=(m+1)2+24>0,
∴关于x的方程x2﹣mx﹣3x+m﹣4=0有两个不相等的实数根;
(2)解:∵x1,x2是方程的两个实数根,
∴x1+x2=m+3,
∵x1+x2=4,
∴m+3=4,
∴m=1,
∴原方程为:x2﹣4x﹣3=0,
解得:x1=2+,x2=2﹣,
∴方程的这两个实数根为:x1=2+,x2=2﹣.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2+bx的图象过点A(4,0),设点C(1,-3),在抛物线的对称轴上求一点P,使|PA-PC|的值最大,则点P的坐标为____________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】华为手机与苹果手机受消费者喜爱,某商户每周都用25000元购进250张华为手机壳和150张苹果手机壳.
(1)商户在第一周销售时,每张华为手机壳的售价比每张苹果手机壳的售价的2倍少10元,且两种手机壳在一周之内全部售完,总盈利为5000元,商户销售苹果手机壳的价格每张多少元?
(2)商户在第二周销售时,受到各种因素的影响,每张华为手机壳的售价比第一周每张华为手机壳的售价增加,但华为手机壳的销售量比第一周华为手机壳的销售量下降了a%;每张苹果手机壳的售价比第一周每张苹果手机壳的售价下降了a%,但苹果手机壳销售量与第一周苹果手机壳销售量相同,结果第二周的总销售额为30000元,求a()的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(﹣1,0)两点,与反比例函数与反比例函数y=的图象在第一象限内的交点为M(m,4).
(1)求一次函数和反比例函数的表达式;
(2)求△AOM的面积;
(3)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正六边形ABCDEF的边长为2,现将它沿AB方向平移1个单位,得到正六边形A′B′C′D′E′F′,则阴影部分A′BCDE′F′的面积是( )
A.3B.4C.D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(3,4),B(5,0),连结AO,AB.点C是线段AO上的动点(不与A,O重合),连结BC,以BC为直径作⊙H,交x轴于点D,交AB于点E,连结CD,CE,过E作EF⊥x轴于F,交BC于G.
(1)AO的长为 ,AB的长为 (直接写出答案)
(2)求证:△ACE∽△BEF;
(3)若圆心H落在EF上,求BC的长;
(4)若△CEG是以CG为腰的等腰三角形,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,则EF的长是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com