精英家教网 > 初中数学 > 题目详情
(2008•济南)已知:如图,直线y=-x+4与x轴相交于点A,与直线y=x相交于点P.
(1)求点P的坐标;
(2)请判断△OPA的形状并说明理由;
(3)动点E从原点O出发,以每秒1个单位的速度沿着O、P、A的路线向点A匀速运动(E不与点O,A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B,设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.
求:①S与t之间的函数关系式.②当t为何值时,S最大,并求出S的最大值.

【答案】分析:(1)由两直线相交可列出方程组,求出P点坐标;
(2)将y=0代入y=-x+4,可求出OA=4,作PD⊥OA于D,则OD=2,PD=2,利用tan∠POA=,可知∠POA=60°,由OP=4.可知△POA是等边三角形;
(3)①当0<t≤4时,在Rt△EOF中,∠EOF=60°,OE=t,则EF=,OF=,则S=•OF•EF=t2
②当4<t<8时,如图,设EB与OP相交于点C,易知:CE=PE=t-4,AE=8-t,可得AF=4-,EF=(8-t),有OF=OA-AF=4-(4-)=,S=(CE+OF)•EF=-t2+4t-8
解答:解:(1)由题意可得:
解得
所以点P的坐标为(2,2);

(2)将y=0代入y=-x+4,-x+4=0,
∴x=4,即OA=4,
作PD⊥OA于D,则OD=2,PD=2
∵tan∠POA==
∴∠POA=60°,
∵OP==4,
∴△POA是等边三角形;

(3)①当0<t≤4时,如图,在Rt△EOF中,
∵∠EOF=60°,OE=t,
∴EF=,OF=
∴S=•OF•EF=t2
当4<t<8时,如图,设EB与OP相交于点C,
∵CE=PE=t-4,AE=8-t,
∴AF=4-,EF=(8-t),
∴OF=OA-AF=4-(4-)=
∴S=(CE+OF)•EF=(t-4+t)×(8-t),
=-t2+4t-8
②当0<t≤4时,S=,t=4时,S最大=2
当4<t<8时,S=-t2+4t-8=-(t-2+
t=时,S最大=
>2
∴当t=时,S最大,最大值为
点评:把动点问题与三角形的性质相结合,增加了难度,在解答时要注意t在三个取值范围内的情况,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2008•济南)已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-3),与x轴交于A,B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A,D,B,E,点P为线段AB上一个动点(P与A,B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断是否为定值?若是,请求出此定值;若不是,请说明理由;
(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边AE,BE相交于点F,G(F与A,E不重合,G与E,B不重合),请判断是否成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年安徽省黄山市潜口中学中考数学模拟试卷(八)(解析版) 题型:解答题

(2008•济南)已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-3),与x轴交于A,B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A,D,B,E,点P为线段AB上一个动点(P与A,B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断是否为定值?若是,请求出此定值;若不是,请说明理由;
(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边AE,BE相交于点F,G(F与A,E不重合,G与E,B不重合),请判断是否成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年山东省济南市中考数学试卷(解析版) 题型:解答题

(2008•济南)已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-3),与x轴交于A,B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A,D,B,E,点P为线段AB上一个动点(P与A,B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断是否为定值?若是,请求出此定值;若不是,请说明理由;
(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边AE,BE相交于点F,G(F与A,E不重合,G与E,B不重合),请判断是否成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年广东省汕头市濠江区中考数学模拟试卷(解析版) 题型:解答题

(2008•济南)已知:如图,直线y=-x+4与x轴相交于点A,与直线y=x相交于点P.
(1)求点P的坐标;
(2)请判断△OPA的形状并说明理由;
(3)动点E从原点O出发,以每秒1个单位的速度沿着O、P、A的路线向点A匀速运动(E不与点O,A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B,设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.
求:①S与t之间的函数关系式.②当t为何值时,S最大,并求出S的最大值.

查看答案和解析>>

同步练习册答案