精英家教网 > 初中数学 > 题目详情
4.如图,已知⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.
(1)求证:AG与⊙O相切;
(2)若AC=5,AB=12,BE=$\frac{13}{3}$,求线段OE的长.

分析 (1)根据EF⊥BC,得∠BFE=90°,由对顶角相等和等边对等角可得:∠BAO+∠GAE=90°,OA⊥AG,即AG与⊙O相切;
(2)证明△BEF∽△BCA,列比例式得:$\frac{BF}{BA}$=$\frac{BE}{BC}$=$\frac{EF}{CA}$,可求得EF和BF的长,利用勾股定理求OE的长.

解答 证明:(1)如图,连接OA,
∵OA=OB,GA=GE,
∴∠ABO=∠BAO,∠GEA=∠GAE,
∵EF⊥BC,
∴∠BFE=90°,
∴∠ABO+∠BEF=90°.
又∵∠BEF=∠GEA,
∴∠GAE=∠BEF,
∴∠BAO+∠GAE=90°,
∴OA⊥AG,
即AG与⊙O相切;

(2)解:∵BC为直径,
∴∠BAC=90°,
∵AC=5,AB=12,
∴BC=13,
∵∠EBF=∠CBA,∠BFE=∠BAC,
∴△BEF∽△BCA,
∴$\frac{BF}{BA}$=$\frac{BE}{BC}$=$\frac{EF}{CA}$,
∴$\frac{BF}{12}=\frac{\frac{13}{3}}{13}=\frac{EF}{5}$,
∴EF=$\frac{5}{3}$,BF=4,
∴OF=OB-BF=$\frac{13}{2}$-4=$\frac{5}{2}$,
∴OE=$\sqrt{E{F}^{2}+O{F}^{2}}$=$\frac{5}{6}\sqrt{13}$.

点评 本题考查了切线的判定、三角形相似的性质和判定、勾股定理,熟练掌握切线的判定是关键,证明切线的常见的辅助线作法有:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图1,点P、Q分别是等边△ABC边AB、BC上的点,其中AP=BQ.连接CP、AQ相交于点M,
(1)求证:△ABQ≌△CAP;
(2)求∠CMQ的度数;
(3)如图2,若点P、Q在等边△ABC边AB、BC的延长线上,仍有AP=BQ,直线AQ、CP交点为M,则∠QMC的度数为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知y=(m+2)x|m+3|+n-2.
(1)当m,n为何值时,y是x的正比例函数?
(2)当m,n为何值时,y是x的一次函数?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算
(1)解方程 2(x+2)2=x2-4;
(2)已知x=2-$\sqrt{3}$,y=2+$\sqrt{3}$,求x2+xy+y2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.【阅读理解】我们知道,在正比例函数y=ax(a>0)中y随x的增大而增大,当x取最小值时y有最小值;在反比例函数y=$\frac{k}{x}$(k>0)中,当x>0时y随x的增大而减小,当x取最大值时y有最小值,那么当x>0时函数y=ax+$\frac{k}{x}$(a>0,k>0)是否存在最值呢?下面以y=2x+$\frac{18}{x}$为例进行探究:
∵x>0,∴y=2x+$\frac{18}{x}$=2(x+$\frac{9}{x}$)=2[$(\sqrt{x})^{2}$+$(\frac{3}{\sqrt{5}})^{2}$]
=[$(\sqrt{x})^{2}$-6+$(\frac{3}{\sqrt{5}})^{2}$+6]
=2[$(\sqrt{x}-\frac{3}{\sqrt{x}})^{2}$+6]
=2$(\sqrt{x}-\frac{3}{\sqrt{x}})^{2}$+12
∴当$\sqrt{x}$-$\frac{3}{\sqrt{x}}$=0,即x=3时y有最小值,这时y最小=12.
【现学现用】
已知x>0,当x=1时,函数y=x+$\frac{1}{x}$有最大值(填“大”或“小”),最值为2.
【拓展应用】
A、B两城市相距400千米,限速为300千米/小时的高铁从A城到B城的运行成本(万元)由可变成本和固定成本两部分构成,每小时的可变成本与行驶速度v(千米/小时)
的平方成正比,且比例系数k,固定成本为每小时4万元,在试运行过程中经测算,当行驶速度为100千米/小时时,可变成本为每小时1万元.
(1)试把每小时运行总成本为每小时1万元;
(2)为了使全程运行成本z最低,高铁行驶的速度应为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,等边△ABC的边长为6,P沿C→B→A运动,Q沿B→A→C运动,且速度都为每秒2个单位,△BPQ面积为y,则y与运动时间x秒的函数的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图1所示,在正方形ABCD中,AB=1,$\widehat{AC}$是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的动点(点E与点A,D不重合),过E作$\widehat{AC}$所在圆的切线,交边DC于点F,G为切点.
(1)求证:EA=EG;
(2)设AE=x,FC=y,求y关于x的函数关系式,并直接写出x的取值范围;
(3)如图2所示,将△DEF沿直线EF翻折后得△D1EF,连接AD1,D1D,试探索:当点E运动到何处时,△AD1D与△ED1F相似?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.小洪根据演讲比赛中九位评委所给的分数制作了如表:
平均数中位数众数方差
8.58.38.10.15
如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是中位数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.一次函数y=x+m的图象与反比例函数y=$\frac{k}{x}$的图象交于A、B两点,点A的坐标为(2,1).
(1)求m及k的值;
(2)求点B的坐标,并结合图象直接写出当一次函数值大于反比例函数值时x的取值范围.

查看答案和解析>>

同步练习册答案