精英家教网 > 初中数学 > 题目详情
如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=精英家教网∠ABD.
(1)求证:CD是⊙O的切线;
(2)若∠CDB=∠CBD,⊙O的直径为6,CD=4,求CE的长.
分析:(1)连接AF,由直径所对的圆周角是直角、同弧所对的圆周角相等的性质,证得直线CD是⊙O的切线.
(2)连接OB,构造直角三角形,用勾股定理解答即可.
解答:精英家教网(1)证明:连接AF
∵DF是直径
∴∠DAF=90°
∴∠AFD+∠ADF=90°
∵∠AFD=∠ABD=∠ADG
∴∠ADG+∠ADF=90°即∠GDF=90°
∴CD是⊙O的切线.

(2)解:连接OB
∵OB=OD
∴∠ODB=∠OBD
∵∠CDB=∠CBD
∴∠ODB+∠CDB=∠OBD+∠CBD=90°即∠ODC=∠OBC=90°
∴BC是⊙O的切线
∵CB⊥AB
∴AB是⊙O的直径点E与圆心O重合
CE=
CD2+OD2
=
42+32
=5
点评:此题考查了切线的性质与判定、弦切角定理、相似三角形的判定与性质等知识.注意乘积的形式可以转化为比例的形式,通过证明三角形相似得出.还要注意构造直径所对的圆周角是圆中的常见辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD.
求证:AD•CE=DE•DF;
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);
(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.
注意:选取①完成证明得8分;选取②完成证明得6分;选取③完成证明得4分.
①∠CDB=∠CEB;
②AD∥EC;
③∠DEC=∠ADF,且∠CDE=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2005•东城区一模)如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB于点B,G是直线CD上一点,∠ADG=∠ABD,AD∥CE.
(1)求证:AD•CE=DE•DF.
(2)若∠DAE=30°,BC=2,AD=
5
2
,AE:BE=2:3,求
BD
的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD.
求证:AD•CE=DE•DF;
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);
(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.
①∠CDB=∠CEB;
②AD∥EC;
③∠DEC=∠ADF,且∠CDE=90°.

查看答案和解析>>

科目:初中数学 来源:2013年福建省泉州市南安实验中学中考数学模拟试卷(解析版) 题型:解答题

如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD.
(1)求证:CD是⊙O的切线;
(2)若∠CDB=∠CBD,⊙O的直径为6,CD=4,求CE的长.

查看答案和解析>>

同步练习册答案