分析 (1)先求出OA,OC,再根据矩形的性质得出BA=2,即可得出结论;
(2)①利用对称的性质即可得出结论;
②利用待定系数法即可求出直线E'F'解析式;
(3)先判断出点M,N是直线E'F'和x,y轴的交点,再利用两点间的距离公式即可得出结论.
解答 解:(1)∵A(3,0),B(0,2),
∴OA=3,OC=2,
∵四边形OABC是矩形,
∴BC∥OA,OC∥AB,BC=OA=3,AB=OC=2,
∴C(3,2),
∵点E是AB的中点,
∴AE=$\frac{1}{2}$AB=1,
∴E(3,1),
∵点F在BC上,且CF=1,
∴F(1,2),
故答案为:(3,1),(1,2),
(2)①由(1)知,E(3,1),F(1,2),
∵点E关于x轴的对称点为E′,点F关于y轴的对称点为F′,
∴E'(3,-1),F'(-1,2),
故答案为:(3,-1),F'(-1,2);
②设直线E'F'的解析式为y=kx+b,
∴$\left\{\begin{array}{l}{3k+b=-1}\\{-k+b=2}\end{array}\right.$,
∴$\left\{\begin{array}{l}{k=-\frac{3}{4}}\\{b=\frac{5}{4}}\end{array}\right.$,
∴直线E'F'的解析式为y=-$\frac{3}{4}$x+$\frac{5}{4}$;
(3)如图,∵E(3,1),F(1,2),
∴EF=$\sqrt{5}$,
∵点E关于x轴的对称点为E′,点F关于y轴的对称点为F′,
∴连接E'F'和x轴交于M,和y轴交于N,此时四边形MNFE的周长最小,
∴NF=NF',ME=ME',
∵E'(3,-1),F'(-1,2),
∴E'F=$\sqrt{(3+1)^{2}+(-1-2)^{2}}$=5,
∴四边形MNFE的周长的最小值为NF+MN+ME+EF
=NF'+MN+ME'+EF=E'F'+EF=5+$\sqrt{5}$.
点评 此题是四边形综合题,主要考查了矩形的性质,对称的性质,待定系数法,两点间的距离公式,解(2)的关键是求出点E',F'的坐标,解(3)的关键是判断出点M,N的位置,是一道常规题.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 该函数图象经过点(-1,1) | B. | 该函数图象在第二、四象限 | ||
C. | 当x<0时,y随着x的增大而减小 | D. | 当x>1时,-1<y<0 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com