精英家教网 > 初中数学 > 题目详情
14.如图,E是?ABCD的边DC延长线上的一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于点O,连接OF,求证:AB=2OF.

分析 先证明△ABF≌△ECF得BF=FC,再利用三角形中位线定理即可解决问题.

解答 证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,AO=OC,
∵CD=CE,
∴AB=CE,∠BAF=∠CEF,
在△ABF和△ECF中,
$\left\{\begin{array}{l}{∠BAF=∠FEC}\\{∠AFB=∠EFC}\\{AB=CE}\end{array}\right.$,
∴△ABF≌△ECF,
∴BF=FC,
∵AO=OC,
∴AB=2OF.

点评 本题考查三角形中位线定理、平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形,出现中点条件想到三角形中位线定理,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.已知关于x的不等式组$\left\{\begin{array}{l}{3x-a≥0}\\{2x-b≤0}\end{array}\right.$的整数解仅有1、2.若a、b的值均为整数,求a、b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.瑞士著名数学家自然学家欧拉是18世纪数学界最杰出的人物之一,我们现在可以见到很多以欧拉来命名的常数,公式,定理,在分式中,就有这样一个欧拉公式:
$\frac{a′}{(a-b)(a-c)}$+$\frac{b′}{(b-c)(b-a)}$+$\frac{c′}{(c-a)(c-b)}$=$\left\{\begin{array}{l}{0(r=0.1时)}\\{1(r=2时)}\\{a+b+c(r=3时)}\end{array}\right.$
(1)计算:$\frac{a+x}{(a-b)(a-c)}$+$\frac{b+x}{(b-a)(b-c)}$+$\frac{c+x}{(c-a)(c-b)}$;
(2)试证明此公式中当r=3时的情形,即$\frac{{a}^{3}}{(a-b)(a-c)}$+$\frac{{b}^{3}}{(b-c)(b-a)}$+$\frac{{c}^{3}}{(c-a)(c-b)}$=a+b+c.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,四边形ABCD是菱形,对角线AC、BD相交于O,如果菱形的周长是40cm,它的一条对角线AC长10cm,
(1)求∠ABC和∠BCD;
(2)四边形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在梯形ABCD中,AD∥BC,E为CD的中点,AD+BC=AB.则:
(1)AE、BE分别平分∠DAB、∠ABC吗?为什么?
(2)AE⊥BE吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.在平面直角坐标系中,等边三角形OAB中OB在x轴上,点A在第一象限,双曲线y=$\frac{4\sqrt{3}}{x}$交OA于点C,交AB于点D,若OC:BD=2:1,则OB=5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.在等腰三角形ABC中,AB=AC=5,BC=6,D是BC上一点,作DE⊥AB,DF⊥AC,则DE+DF=4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,第一个正方形的顶点A1(-1,1),B1(1,1);第二个正方形的顶点A2(-3,3),B2(3,3);第三个正方形的顶点A3(-6,6),B3(6,6),按顺序取点A1,B2,A3,B4,A5,B6…,则第10个点应取点B10,其坐标为(55,55),第2n-1(n为正整数)个点应取点A2n-1,其坐标为(-n(2n-1),n(2n-1)).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,将矩形ABCD绕点C顺时针旋转90°得到矩形FGCE,点M、N分别是BD、GE的中点,若BC=14,CE=2,则MN的长(  )
A.7B.8C.9D.10

查看答案和解析>>

同步练习册答案