分析 (1)根据题目要求画出图形即可;
(2)根据三角形中位线定理可得EF∥AB,EF=$\frac{1}{2}$AB,NM∥CD,MN=$\frac{1}{2}$DC,再由矩形的性质可得AB∥DC,AB=DC,AC=BD,进而可得四边形EFMN是矩形;
(3)根据条件可得DM垂直平分OC,进而可得DO=CO,然后证明△COD是等边三角形,进而得出BC,CD的长,进而得出答案.
解答 (1)解:如图所示:
(2)证明:∵点E,F分别为OA,OB的中点,
∴EF∥AB,EF=$\frac{1}{2}$AB,
同理:NM∥CD,MN=$\frac{1}{2}$DC,
∵四边形ABCD是矩形,
∴AB∥DC,AB=DC,AC=BD,
∴EF∥NM,EF=MN,
∴四边形EFMN是平行四边形,
∵点E,F,M,N分别为OA,OB,OC,OD的中点,
∴EO=$\frac{1}{2}$AO,MO=$\frac{1}{2}$CO,
在矩形ABCD中,AO=CO=$\frac{1}{2}$AC,BO=DO=$\frac{1}{2}$BD,
∴EM=EO+MO=$\frac{1}{2}$AC,
同理可证FN=$\frac{1}{2}$BD,
∴EM=FN,
∴四边形EFMN是矩形.
(3)解:∵DM⊥AC于点M,
由(2)MO=$\frac{1}{2}$CO,
∴DO=CD,
在矩形ABCD中,
AO=CO=$\frac{1}{2}$AC,BO=DO=$\frac{1}{2}$BD,AC=BD,
∴AO=BO=CO=DO,
∴△COD是等边三角形,
∴∠ODC=60°,
∵MN∥DC,
∴∠FNM=∠ODC=60°,
在矩形EFMN中,∠FMN=90°.
∴∠NFM=90°-∠FNM=30°,
∵NO=3,
∴FN=2NO=6,FM=3$\sqrt{3}$,MN=3,
∵点F,M分别为OB,OC的中点,
∴BC=2FM=6$\sqrt{3}$,
∴矩形的面积为BC•CD=36$\sqrt{3}$.
点评 此题主要考查了矩形的判定与性质以及等边三角形的判定与性质、勾股定理等知识,正确得出△COD是等边三角形是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com