精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=
1
2
x2
+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).
(1)求抛物线的解析式;
(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连接DC,当△DCE的面积最大时,求点D的坐标;
(3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,求点P的坐标;若不存在,说明理由.
(1)由于抛物线经过A(2,0),C(0,-1),
则有:
1
2
×4+2b+c=0
c=-1

解得
b=-
1
2
c=-1

∴抛物线的解析式为:y=
1
2
x2
-
1
2
x-1.

(2)∵A(2,0),C(0,-1),
∴直线AC:y=
1
2
x-1;
设D(x,0),则E(x,
1
2
x-1),
故DE=0-(
1
2
x-1)=1-
1
2
x;
∴△DCE的面积:S=
1
2
DE×|xD|=
1
2
×(1-
1
2
x)×x=-
1
4
x2+
1
2
x=-
1
4
(x-1)2+
1
4

因此当x=1,
即D(1,0)时,△DCE的面积最大,且最大值为
1
4


(3)由(1)的抛物线解析式易知:B(-1,0),
可求得直线BC的解析式为:y=-x-1;
设P(x,-x-1),因为A(2,0),C(0,-1),则有:
AP2=(x-2)2+(-x-1)2=2x2-2x+5,
AC2=5,CP2=x2+(-x-1+1)2=2x2
①当AP=CP时,AP2=CP2,有:
2x2-2x+5=2x2,解得x=2.5,
∴P1(2.5,-3.5);
②当AP=AC时,AP2=AC2,有:
2x2-2x+5=5,解得x=0(舍去),x=1,
∴P2(1,-2);
③当CP=AC时,CP2=AC2,有:
2x2=5,解得x=±
10
2

∴P3
10
2
,-
10
2
-1),P4(-
10
2
10
2
-1);
综上所述,存在符合条件的P点,且P点坐标为:P1(2.5,-3.5)、P2(1,-2)、P3
10
2
,-
10
2
-1)、P4(-
10
2
10
2
-1).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c经过点A(-1,0)、B(3,0)和C(0,-3),线段BC与抛物线的对称轴相交于点P.M、N分别是线段OC和x轴上的动点,运动时保持∠MPN=90°不变.连结MN,设MC=m.
(1)求抛物线的函数解析式;
(2)用含m的代数式表示△PMN的面积S,并求S的最大值;
(3)以PM、PN为一组邻边作矩形PMDN,当此矩形全部落在抛物线与x轴围成的封闭区域内(含边界)时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,从O点射出炮弹落地点为D,弹道轨迹是抛物线,若击中目标C点,在A测C的仰角∠BAC=45°,在B测C的仰角∠ABC=30°,AB相距(1+
3
)km,OA=2km,AD=2km.
(1)求抛物线解析式;
(2)求抛物线对称轴和炮弹运行时最高点距地面的高度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,排球运动员甲站在点O处练习发球,球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.若把球看成点,其运行的高度y(m)与运行的水平距离x(m)是二次函数关系.以O为原点建立平面直角坐标系.
(1)在某一次发球时,甲将球从O点正上方2m的A处发出,已知球的最大飞行高度为2.6m,此时距O点的水平距离为6m.
①求抛物线的解析式.
②球能否越过球网?球会不会出界?请说明理由.
(2)若球的最大飞行高度时距O点的水平距离6m不变,要使球一定能越过球网,又不出边界,求二次函数中二次项系数的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线C1的顶点坐标是D(1,4),且经过点C(2,3),又与x轴交于点A、E(点A在点E左边),与y轴交于点B.
(1)抛物线C1的表达式是______;
(2)四边形ABDE的面积等于______;
(3)问:△AOB与△DBE相似吗?并说明你的理由;
(4)设抛物线C1的对称轴与x轴交于点F.另一条抛物线C2经过点E(C2与C1不重合),且顶点为M(a,b),对称轴与x轴交于点G,并且以M、G、E为顶点的三角形与以点D、E、F为顶点的三角形全等,求a、b的值.(只需写出结果,不必写解答过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,图①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5根支柱A1B1、A2B2、A3B3、A4B4、A5B5之间的距离均为15m,B1B5A1A5,将抛物线放在图②所示的直角坐标系中.
(1)直接写出图②中点B1、B3、B5的坐标;
(2)求图②中抛物线的函数表达式;
(3)求图①中支柱A2B2、A4B4的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某科研所投资200万元,成功地研制出一种市场需求量较大的汽配零件,并投入资金700万元进行批量生产.已知每个零件成本20元.通过市场销售调查发现:当销售单价定为50元时,年销售量为20万件;销售单价每增加1元,年销售量将减少1000件.设销售单价为x元,年销售量为y(万件),年获利为z(万元)
(1)试写出y与x之间的函数关系式(不必写出x的取值范围)
(2)试写出z与x之间的函数关系式(不必写出x的取值范围)
(3)当销售单价定为多少时,年获利最多?并求出这个年利润.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

养鸡专业户小李要建一个露天养鸡场,鸡场的一边靠墙(墙足够长),其他边用竹篱笆围成,竹篱笆的长为40m,读九年级的儿子小军为他设计了如下方案:如图,把养鸡场围成等腰梯形ABCD,且∠ABC=120°.
(1)当AB为何值时,所围的面积是132
3
m2

(2)当AB为何值时,所围的面积最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

飞机着陆后滑行的距离s(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t-1.5t2.飞机着陆后滑行______秒才能停下来.

查看答案和解析>>

同步练习册答案