精英家教网 > 初中数学 > 题目详情
11.如图,点P、Q分别为等边△ABC的边AB、BC上的点,且AP=BQ,若AQ与PC相
交于点M,则∠AMC的度数为120°.

分析 利用等边三角形的性质得AB=AC,∠BAC=∠B=60°,再证明△ABQ≌△CAP得到∠BAQ=∠ACP,则∠ACM+∠CAM=∠PAC=60°,然后根据三角形内角和计算∠AMC的度数.

解答 解:∵△ABC为等边三角形,
∴AB=AC,∠BAC=∠B=60°,
在△ABQ和△CAP中
$\left\{\begin{array}{l}{AB=CA}\\{∠ABQ=∠CAP}\\{BQ=AP}\end{array}\right.$,
∴△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∴∠ACM+∠CAM=∠PAM+∠CAM=∠PAC=60°,
∴∠AMC=180°-60°=120°.
故答案为120.

点评 本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.也考查了等边三角形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.如图,△ABC≌△ADE,BC的延长线经过点E,交AD于F,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,则∠EAB=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.有理数a、b、c在数轴上的位置如图所示,下列结论正确的是(  )
A.-b>a>cB.a-b<0C.c+b<0D.c>|b|

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.在下列图形中,既是轴对称图形又是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.$\sqrt{1}$=±1B.1的立方根是±1
C.一个数的算术平方根一定是正数D.9的平方根是±3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.若a为方程x2+x-5=0的解,则a2+a+1的值为(  )
A.12B.16C.9D.6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列各式中,等号不成立的是(  )
A.|-4|=4B.-|4|=-|-4|C.|-4|=|4|D.-|-4|=4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,已知:P是∠AOB平分线上一点,PE⊥OA,PF⊥OB,垂足分别是E,F,G,H分别是OA,OB上两点,且PG=PH,求证:EG=FH.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=6,BC=8,MN=2.
(1)求证:BN=DN;
(2)求△ABC的周长;
(3)△ABC是不是直角三角形,为什么?

查看答案和解析>>

同步练习册答案