精英家教网 > 初中数学 > 题目详情
有理数的减法可以转化成(     ),因此有理数的加减混合运算可以(     )。
加法 ;转化为有理数的加法运算
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

求若干个相同的不为零的有理数的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3),读作“-3的圈4次方”.一般地,把
a÷a÷a…÷a
n个a
(a≠0)记作a,读作“a的圈n次方”.
(1)直接写出计算结果:2=
1
2
1
2
,(-3)=
1
9
1
9
,(-
1
2
=
-8
-8

(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试把有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈n次方等于
这个数倒数的(n-2)次方
这个数倒数的(n-2)次方

(3)计算24÷23+(-8)×2

查看答案和解析>>

科目:初中数学 来源: 题型:

同学们学过有理数减法可以转化为有理数加法来运算,有理数除法可以转化为有理数乘法来运算.其实这种转化的数学方法,在学习数学时会经常用到,通过转化我们可以把一个复杂问题转化为一个简单问题来解决.
例如:计算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5

此题我们按照常规的运算方法计算比较复杂,但如果采用下面的方法把乘法转化为减法后计算就变得非常简单.
分析方法:因为
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
4×5
=
1
4
-
1
5

所以,将以上4个等式两边分别相加即可得到结果,解法如下:
解:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+(
1
4
-
1
5
)
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
=1-
1
5
=
4
5

(1)应用上面的方法计算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012

(2)计算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1
(只填答案).
(3)类比应用上面的方法探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2010×2012

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 人教课标七年级版 2009-2010学年 第3期 总第159期 人教课标版 题型:022

有理数的加减混合运算中的减法,可以根据减法法则将减法转化为________.这样可以统一成几个正数或负数的和的形式.

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 华师大七年级版 2009-2010学年 第4期 总第160期 华师大版 题型:044

计算:(-8)-(-9)+(-5)-(+3).

这是有理数的加减混合运算,可以按照以下两种方法进行

解法一:从左到右逐个相加.

原式=(________)+(-5)-(+3)=(________)-(+3)=________.

解法二:把减法转化为加法,使加减混合运算统一为加法运算.

原式=(-8)+(________)+(-5)+(________)=________.

查看答案和解析>>

同步练习册答案