精英家教网 > 初中数学 > 题目详情
如图,菱形ABCD中,∠B=60°,AB=2,点E、F分别是AB、AD上的动点,且满足BE=AF,接连EF、EC、CF.
(1)求证:△EFC是等边三角形;
(2)试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.
分析:(1)利用菱形的性质首先得出△ABC是等边三角形,进而得出△AFC≌△BEC,即可得出△EFC是等边三角形;
(2)利用当CE⊥AB时CE最短,由△CEF是等边三角形,EF也是最短的.CE是边长为2等边△ABC的高,即可得出△AEF周长的最小值.
解答:(1)证明:连接AC,
∵四边形ABCD是菱形,
∴∠1=∠2=
1
2
∠BAD,AD∥BC,AB=BC,
∴∠B+∠BAD=180°,
∵∠B=60°,
∴∠BAD=120°,
∴∠1=∠2=60°,
∵AB=BC,
∴△ABC是等边三角形,
∴AC=BC,
在△AFC和△BEC中,
AF=BE
∠B=∠2
AC=BC

∴△AFC≌△BEC(SAS),
∴FC=EC,∠4=∠3,
∵AD∥CB,
∴∠4+∠5=∠2=60°,
∴∠3+∠5=60°,
∴△EFC是等边三角形;

(2)解:△AEF的周长有最小值,
理由:当CE⊥AB时CE最短,由△CEF是等边三角形,
∴EF也是最短的.
CE是边长为2等边△ABC的高,
∴CE=
3
,EF=
3

所以AE+AF+EF=2+
3

∴△AEF周长的最小值为:2+
3
点评:此题主要考查了菱形的性质以及等边三角形的判定与性质和锐角三角函数等知识,根据题意得出EF最小时则△AEF的周长最小得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.
(1)求证:AE=AF;
(2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,菱形ABCD中,∠A=60°,AB=2,动点P从点B出发,以每秒1个单位长度的速度沿B→C→D向终点D运动.同时动点Q从点A出发,以相同的速度沿A→D→B向终点B运动,运动的时间为x秒,当点P到达点D时,点P、Q同时停止运动,设△APQ的面积为y,则反映y与x的函数关系的图象是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠BAD=60°,M是AB的中点,P是对角线AC上的一个动点,若AB长为2
3
,则PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:菱形ABCD中,E是AB的中点,且CE⊥AB,AB=6cm.
求:(1)∠BCD的度数;
(2)对角线BD的长;
(3)菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的长.
(2)求菱形的面积.

查看答案和解析>>

同步练习册答案