精英家教网 > 初中数学 > 题目详情
已知圆的半径为13,两条弦长分别为10和24,且弦AB∥CD,则AB、CD相距   
【答案】分析:分两种情况考虑:(1)当两条弦在圆心O同侧时,如图1所示,过O作OE⊥CD,与AB交于F点,由AB∥CD,可得出OF⊥AB,连接OA,OC,利用垂径定理得到E、F分别为CD、AB的中点,由CD与AB的长求出CE与AF的长,再由半径OA与OC的长,利用勾股定理分别求出OE与OF,由OE-OF即可求出两弦间的距离EF的长;
(2)当两条弦在圆心O异侧时,如图1所示,过O作OE⊥CD,与AB交于F点,由AB∥CD,可得出OF⊥AB,连接OA,OC,利用垂径定理得到E、F分别为CD、AB的中点,由CD与AB的长求出CE与AF的长,再由半径OA与OC的长,利用勾股定理分别求出OE与OF,由OE+OF即可求出两弦间的距离EF的长,综上,得到AB与CD的距离.
解答:解:分两种情况考虑:
(1)当弦AB与弦CD在圆心O同侧时,如图1所示,
过O作OE⊥CD,与AB交于F点,由AB∥CD,可得出OF⊥AB,
连接OA,OC,
∵OE⊥CD,OF⊥AB,
∴E、F分别为CD、AB的中点,
∵AB=24,CD=10,
∴CE=DE=5,AF=BF=12,
又∵半径OA=OC=13,
∴在Rt△AOF中,根据勾股定理得:OF==5,
在Rt△COE中,根据勾股定理得:OE==12,
则两弦间的距离EF=OE-OF=12-5=7;

(2)当弦AB与弦CD在圆心O异侧时,如图2所示,
过O作OE⊥CD,与AB交于F点,由AB∥CD,可得出OF⊥AB,
连接OA,OC,
∵OE⊥CD,OF⊥AB,
∴E、F分别为CD、AB的中点,
∵AB=24,CD=10,
∴CE=DE=5,AF=BF=12,
又半径OA=OC=13,
∴在Rt△AOF中,根据勾股定理得:OF==5,
在Rt△COE中,根据勾股定理得:OE==12,
则两弦间的距离EF=OE+OF=12+5=17,
综上,两条弦间的距离为7或17.
故答案为:7或17.
点评:此题考查了垂径定理,以及勾股定理,利用了分类讨论的思想,分类讨论时要做到不重不漏.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、已知⊙O1的半径为8cm,⊙O2的半径为5cm,若两圆相切,则圆心距为
13或3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•海门市模拟)如图,以O为圆心,半径为2的圆与反比例函数y=
k
x
(x>0)的图象交于A、B两点,已知
AB
的长度为
1
3
π,则k的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知圆的半径为13,两条弦长分别为10和24,且弦AB∥CD,则AB、CD相距
7或17
7或17

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知圆的半径为13,两条弦长分别为10和24,且弦AB∥CD,则AB、CD相距________.

查看答案和解析>>

同步练习册答案