【题目】如图,在△ABC中,AC=BC,∠ACB=90°,将△ABC绕点C逆时针旋转α角(0°<α<90°),得到△A1B1C,连接BB1,设CB1交AB于D,A1B1分别交AB,AC于E,F
(1)求证:△CBD≌△CA1F;
(2)试用含α的代数式表示∠B1BD;
(3)当α等于多少度时,△BB1D是等腰三角形.
【答案】(1)证明见解析;(2)∠B1BD=45°﹣;(3)当△BB1D为等腰三角形时,α=30°.
【解析】
(1)根据已知条件,利用旋转的性质及全等三角形的判定方法,来判定三角形全等;
(2)利用等腰直角三角形的性质得到∠CBA=45°.然后由旋转的性质推知BC=B1C,则∠CB1B=∠CBB1,所以根据三角形内角和定理进行解答即可;
(3)当△BBD是等腰三角形时,要分别讨论B1B=B1D、BB1=BD、B1D=DB三种情况,第一,三种情况不成立,只有第二种情况成立,求得α=30°.
(1)证明:∵AC=BC,
∴∠A=∠ABC.
∵△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,
∴∠A1=∠A,A1C=AC,∠ACA1=∠BCB1=α.
∴∠A1=∠CBD,A1C=BC.
在△CBD与△CA1F中,
,
∴△CBD≌△CA1F(ASA).
(2)∵在△ABC中,AC=BC,∠ACB=90°,
∴∠CAB=∠CBA=45°.
又由旋转的性质得到BC=B1C,则∠CB1B=∠CBB1,
∴∠CB1B=∠CBB1==90°﹣
.
∴∠B1BD=∠CBB1﹣∠CBA=90°﹣﹣45°=45°﹣
;
(3)在△CBB1中,∵CB=CB1
∴∠CBB1=∠CB1B=(180°﹣α).
又∵△ABC是等腰直角三角形,
∴∠ABC=45°.
①若B1B=B1D,则∠B1DB=∠B1BD,
∵∠B1DB=45°+α,∠B1BD=∠CBB1﹣45°=(180°﹣α)﹣45°=45°﹣
,
∴45°+α=45°﹣,
∴α=0°(舍去);
②∵∠BB1C=∠B1BC>∠B1BD,
∴BD>B1D,即BD≠B1D;
③若BB1=BD,则∠BDB1=∠BB1D,即45°+α=(180°﹣α),α=30°
由①②③可知,当△BB1D为等腰三角形时,α=30°.
科目:初中数学 来源: 题型:
【题目】(1)如图1,D是等边三角形ABC边BA上一动点(点D)与点B不重合,连接CD,以CD为边在BC上方作等边三角形DCE,连接AE,你能发现AE与BD之间的数量关系吗?并证明你发现的结论.
(2)如图二,当动点D在等边三角形ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在其上方、下方分别作等边三角形DCE和等边三角形DCF,连接AE,BF,探究AE,BF与AB有何数量关系?并证明你探究的结论.
(3)如图三,当动点D在等边三角形ABC边BA的延长线上运动时,其他作法与图2相同,若AE=8,BF=2,请直接写出AB= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解下列方程:
(1)2(10﹣0.5y)=﹣(1.5y+2)
(2)(x﹣5)=3﹣
(x﹣5)
(3)﹣1=
(4)x﹣(x﹣9)=
[x+
(x﹣9)]
(5) -
=0.5x+2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)计算:(-1)3-×[2-(-3)2]
(2) 计算:(﹣12)+(+30)﹣(+65)﹣(﹣47)
(3) 计算:39×(﹣12)
(4) 计算:(﹣1000)×(﹣
+
﹣0.1)
(5)化简:﹣4(a3﹣3b)+(﹣2b2+5a3)
(6)化简:2a﹣2(﹣0.5a+3b﹣c)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据.
月份n(月) | 1 | 2 |
成本y(万元/件) | 11 | 12 |
需求量x(件/月) | 120 | 100 |
(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;
(2)求k,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律: ①该蔬菜的销售价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9﹣x
②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系y=ax2+bx+10,已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.
(1)求该二次函数的解析式;
(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售价﹣平均成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的解题思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com