精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,以点A(3,0)为圆心,以5为半径的圆与x轴相交于点B、C,与y轴相交于点D、E.
(1)若抛物线y=
1
4
x2+bx+c
经过C、D两点,求此抛物线的解析式并判断点B是否在此抛物线上.
(2)若在(1)中的抛物线的对称轴有一点P,使得△PBD的周长最短,求点P的坐标.
(3)若点M为(1)中抛物线上一点,点N为其对称轴上一点,是否存在以点B、C、M、N为顶点的平行四边形?若存在,直接写出点M、N的坐标;若不存在,请说明理由.
(1)由已知,得B(-2,0)C(8,0),D(0,-4)
将C、D两点代入得:
1
4
×82+8b+c=0
c=-4

解得b=-
3
2
,c=-4

∴抛物线的解析式为y=
1
4
x2-
3
2
x-4

1
4
(-2)2-
3
2
×(-2)-4=0

∴点B在这条抛物线上.

(2)要使△PBD的周长最短,由于边BD是定值,只需PB+PD最小,
∵点B、C关于对称轴x=3对称,
∴直线CD与对称轴x=3的交点就是所求的点P.
设直线CD的解析式为y=kx+m.将C、D两点代入,得
8k+m=0
m=-4

解得k=
1
2
,m=-4

∴直线CD的解析式为y=
1
2
x-4
当x=3时,y=-
5
2

∴点P的坐标为(3,-2.5).

(3)存在.
M(-7,
75
4
),N(3,
75
4
)或M(13,
75
4
),N(3,
75
4
)或M(3,-
25
4
),N(3,
25
4
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直角梯形ABCO的边OC落在x轴的正半轴上,且ABOC,BC⊥OC,AB=4,BC=6,OC=8.正方形ODEF的两边分别落在坐标轴上,且它的面积等于直角梯形ABCO面积.将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO的重叠部分面积为S.
(1)分析与计算:求正方形ODEF的边长;
(2)操作与求解:
①正方形ODEF平行移动过程中,通过操作、观察,试判断S(S>0)的变化情况是______;
A、逐渐增大 B、逐渐减少 C、先增大后减少 D、先减少后增大
②当正方形ODEF顶点O移动到点C时,求S的值;
(3)探究与归纳:
设正方形ODEF的顶点O向右移动的距离为x,求重叠部分面积S与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=(x-2)2的顶点为C,直线y=2x+4与抛物线交于A、B两点,试求S△ABC

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

写出下列函数的关系式:有一个角是60°的直角三角形的面积S与斜边x的之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在一块三角形区域ABC中,∠C=90°,边AC=8,BC=6,现要在△ABC内建造一个矩形水池DEFG,如图的设计方案是使DE在AB上.
(1)求△ABC中AB边上的高h;
(2)设DG=x,当x取何值时,水池DEFG的面积最大?
(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另外的方案,使三角形区域中欲建的最大矩形水池能避开大树.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知在平面直角坐标系xOy中,抛物线y=ax2+2x经过点A(4,0),顶点为B.
(1)求顶点B的坐标;
(2)将这条抛物线向左平移后与y轴相交于点C,此时点A移动到点D的位置,且∠DBA=∠CBO,求平移后抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

受不法投机商炒作的影响,去年黑豆价格出现了大幅度波动.1至3月份,黑豆价格大幅度上涨,其价格y1(万元/吨)与月份x(1≤x≤3,且x取整数)之间的关系如下表:
月份x123
价格y1(万元/吨)2.62.83
而从4月份起,黑豆价格大幅度走低,其价格y2(万元/吨)与月份x(4≤x≤6,且x取整数)之间的函数关系如图所示.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出黑豆价格y1(万元/吨)与月份x之间所满足的函数关系式;观察如图,直接写出黑豆价格y2(万元/吨)与月份x之间所满足的一次函数关系式;
(2)某食品加工厂每月均在上旬进货,去年1至3月份的黑豆进货量p1(吨)与月份x之间所满足的函数关系式为p1=-10x+180(1≤x≤3,且x取整数);4至6月份黑豆进货量p2(吨)与月份x之间所满足的函数关系式为p2=30x-30(4≤x≤6,且x取整数).求在前6个月中该加工厂的黑豆进货金额最大的月份和该月的进货金额;
(3)去年7月份黑豆价格在6月的基础上下降了a%,进货量在6月份的基础上增加了2a%.使得7月份进货金额为363万元,请你计算出a的最大整数值.
(参考数据:
3
≈1.7
5
≈2.2
6
≈2.4
7
≈2.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知直线y=x与二次函数y=ax2-2x-1的图象的一个交点M的横坐标为1,则a的值为(  )
A.2B.1C.3D.4

查看答案和解析>>

同步练习册答案